Skip to main content

Models for Tuberculosis

  • Chapter
  • First Online:
  • 4696 Accesses

Part of the book series: Texts in Applied Mathematics ((TAM,volume 69))

Abstract

In this chapter we describe several models for tuberculosis (TB) . The disease is endemic in many areas of the world. The models in this chapter will be extensions of the standard SIR or SEIR type of endemic models presented in Chap. 3. Depending on the typical characteristics of a specific disease, various modifications of the standard models will be considered.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   89.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Aparicio, J. P., and C. Castillo-Chavez (2009) Mathematical modelling of tuberculosis epidemics, Math. Biosc. Eng. 6: 209–237.

    Article  MathSciNet  Google Scholar 

  2. Blower, S. M., and T. Chou (2004) Modeling the emergence of the ‘hot zones’: tuberculosis and the amplification dynamics of drug resistance, Nature Medicine 10: 1111–1116.

    Article  Google Scholar 

  3. Blower, S. M., P.M. Small, and P.C. Hopewell (1996) Control strategies for tuberculosis epidemics: new models for old problems, Science 273: 497–500.

    Article  Google Scholar 

  4. Castillo-Chavez, C., and Z. Feng (1997) To treat or not to treat: the case of tuberculosis. J. Math. Biol. 35: 629–656.

    Article  MathSciNet  Google Scholar 

  5. Castillo-Chavez, C., and Z. Feng (1998) Global stability of an age-structure model for TB and its applications to optimal vaccination strategies, Math.Biosc. 151: 135–154.

    Article  Google Scholar 

  6. CDC, Tuberculosis treatment (2014) http://www.cdc.gov/tb/topic/treatment/.

  7. Cohen, T., and M. Murray (2004) Modeling epidemics of multidrug-resistant M. tuberculosis of heterogeneous fitness Nature Medicine 10: 1117–1121.

    Article  Google Scholar 

  8. Dye, C., and B.G. Williams (2000) Criteria for the control of drug-resistant tuberculosis, Proc. Nat. Acad. Sci. 97: 8180–8185.

    Article  Google Scholar 

  9. Feng, Z., C. Castillo-Chavez, and A.F. Capurro (2000) A model for tuberculosis with exogenous reinfection, Theor. Pop. Biol. 57: 235–247.

    Article  Google Scholar 

  10. Feng, Z., W. Huang, and C. Castillo-Chavez (2001) On the role of variable latent periods in mathematical models for tuberculosis, J. Dyn. Diff. Eq. 13: 435–452.

    Article  MathSciNet  Google Scholar 

  11. Feng, Z., M. Iannelli, and F.A. Milner (2002) A two-strain tuberculosis model with age of infection, SIAM J. Appl. Math. 62: 1634–1656.

    MathSciNet  MATH  Google Scholar 

  12. Fister, K. R., S. Lenhart, and J.S. McNally (1998) Optimizing chemotherapy in an HIV model, Electronic J. Diff. Eq. 32: 1–12.

    MATH  Google Scholar 

  13. Fleming, W., and R. Rishel (1975) Deterministic and Stochastic Optimal Control, Springer.

    Google Scholar 

  14. Jung, E., S. Lenhart, and Z. Feng (2002) Optimal control of treatments in a two-strain tuberculosis model, Discrete and Continuous Dynamical Systems Series B 2: 473–482.

    Article  MathSciNet  Google Scholar 

  15. Kirschner, D., S. Lenhart, and S. Serbin (1997) Optimal control of the chemotherapy of HIV J. Math. Biol. 35: 775–792.

    Article  MathSciNet  Google Scholar 

  16. Levin, S. and D. Pimentel (1981) Selection of intermediate rates of increase in parasite-host systems, Am. Naturalist 117: 308–315.

    Article  MathSciNet  Google Scholar 

  17. Murphy, B. M., B.H. Singer, and D. Kirschner (2003) On treatment of tuberculosis in heterogeneous populations, J. Theor. Biol. 223: 391–404.

    Article  Google Scholar 

  18. Nowak, M.A., and R.M. May (1994) Superinfection and the evolution of parasite virulence, Proc. Roy. Soc. London, Series B: Biological Sciences 255: 81–89.

    Google Scholar 

  19. Pontryagin, L.S. (1987) Mathematical Theory of Optimal Processes, CRC Press.

    Google Scholar 

  20. Porco, T.C., P.M. Small, and S.M. Blower (2001) Amplification dynamics: predicting the effect of HIV on tuberculosis outbreaks, J. Acquired Immune Deficiency Syndromes 28: 437–444.

    Article  Google Scholar 

  21. Rodrigues, P., M.G.M. Gomes, and C. Rebelo (2007) Drug resistance in tuberculosis, a reinfection model, Theor. Pop. Biol. 71: 196–212.

    Article  Google Scholar 

  22. Roeger, L-I.W., Z. Feng, and C. Castillo-Chavez (2009) Modeling TB and HIV co-infections Math. Biosc. Eng. 6: 815–837.

    Article  Google Scholar 

  23. Singer, B.H., and D.E. Kirschner (2004) Influence of backward bifurcation on interpretation of \({\mathcal R}_0\) in a model of epidemic tuberculosis with reinfection, Math. Biosc. Eng. 1: 81–93.

    Article  Google Scholar 

  24. Styblo, K. (1991) Selected papers. vol. 24, Epidemiology of tuberculosis, Hague, The Netherlands: Royal Netherlands Tuberculosis Association.

    Google Scholar 

  25. WHO. Global tuberculosis report 2013 http://www.who.int/tb/publications/global_report/.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Brauer, F., Castillo-Chavez, C., Feng, Z. (2019). Models for Tuberculosis. In: Mathematical Models in Epidemiology. Texts in Applied Mathematics, vol 69. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-9828-9_7

Download citation

Publish with us

Policies and ethics