Skip to main content

Cardiac Magnetic Resonance Imaging Physics

  • Chapter
  • First Online:
Cardiovascular Magnetic Resonance Imaging

Part of the book series: Contemporary Cardiology ((CONCARD))

  • 1843 Accesses

Abstract

The fundamentals of cardiovascular magnetic resonance (CMR) rely on a knowledge of magnetic resonance imaging (MRI) physics. MRI physics describes how protons in a magnetic field behave in response to stimuli such as magnetic gradients and radiofrequency pulses, the basic building blocks of an MRI pulse sequence. MRI pulse sequences utilize the magnetic properties of tissues, specifically T 1, T 2, and T 2* relaxation, to form images and create tissue contrast. In MRI, images are acquired in k-space and must be converted to images. A basic understanding of k-space is crucial to learning how images are formed in MRI, since the parameters of k-space acquisition are directly related to the properties of the final image, e.g., image resolution and field of view. Furthermore, fast imaging techniques, such as parallel imaging and compressed sensing, are applied in k-space. For CMR in particular, accelerated imaging techniques are used to achieve the high temporal resolution necessary to capture the dynamic heart.

In this chapter, we will cover MRI physics, image formation, accelerated imaging techniques, and basic pulse sequences for CMR.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lauterbur PC. Image formation by induced local interactions. Examples employing nuclear magnetic resonance. Clin Orthop Relat Res. 1973;1989(244):3–6.

    Google Scholar 

  2. Sharma P, Socolow J, Patel S, Pettigrew RI, Oshinski JN. Effect of Gd-DTPA-BMA on blood and myocardial T1 at 1.5T and 3T in humans. J Magn Reson Imaging. 2006;23(3):323–30.

    Article  Google Scholar 

  3. MacFall JR, Pelc NJ, Vavrek RM. Correction of spatially dependent phase shifts for partial Fourier imaging. Magn Reson Imaging. 1988;6(2):143–55.

    Article  CAS  Google Scholar 

  4. Hunold P, Maderwald S, Ladd ME, Jellus V, Barkhausen J. Parallel acquisition techniques in cardiac cine magnetic resonance imaging using TrueFISP sequences: comparison of image quality and artifacts. J Magn Reson Imaging. 2004;20(3):506–11.

    Article  Google Scholar 

  5. Tsao J, Boesiger P, Pruessmann KP. K-t BLAST and k-t SENSE: dynamic MRI with high frame rate exploiting spatiotemporal correlations. Magn Reson Med. 2003;50(5):1031–42.

    Article  Google Scholar 

  6. Pruessmann KP, Weiger M, Scheidegger MB, Boesiger P. SENSE: sensitivity encoding for fast MRI. Magn Reson Med. 1999;42(5):952–62.

    Article  CAS  Google Scholar 

  7. Bydder M, Larkman DJ, Hajnal JV. Generalized SMASH imaging. Magn Reson Med. 2002;47(1):160–70.

    Article  Google Scholar 

  8. Hutchinson M, Raff U. Fast MRI data acquisition using multiple detectors. Magn Reson Med. 1988;6(1):87–91.

    Article  CAS  Google Scholar 

  9. Sodickson DK, Manning WJ. Simultaneous acquisition of spatial harmonics (SMASH): fast imaging with radiofrequency coil arrays. Magn Reson Med. 1997;38(4):591–603.

    Article  CAS  Google Scholar 

  10. Griswold MA, Jakob PM, Heidemann RM, et al. Generalized autocalibrating partially parallel acquisitions (GRAPPA). Magn Reson Med. 2002;47(6):1202–10.

    Article  Google Scholar 

  11. Barger AV, Grist TM, Block WF, Mistretta CA. Single breath-hold 3D contrast-enhanced method for assessment of cardiac function. Magn Reson Med. 2000;44(6):821–4.

    Article  CAS  Google Scholar 

  12. Peters DC, Ennis DB, McVeigh ER. High-resolution MRI of cardiac function with projection reconstruction and steady-state free precession. Magn Reson Med. 2002;48(1):82–8.

    Article  Google Scholar 

  13. Larson AC, White RD, Laub G, McVeigh ER, Li D, Simonetti OP. Self-gated cardiac cine MRI. Magn Reson Med. 2004;51(1):93–102.

    Article  Google Scholar 

  14. Bi X, Park J, Larson AC, Zhang Q, Simonetti O, Li D. Contrast-enhanced 4D radial coronary artery imaging at 3.0 T within a single breath-hold. Magn Reson Med. 2005;54(2):470–5.

    Article  Google Scholar 

  15. Meyer CH, Pauly JM, Macovski A, Nishimura DG. Simultaneous spatial and spectral selective excitation. Magn Reson Med. 1990;15(2):287–304.

    Article  CAS  Google Scholar 

  16. Meyer CH, Hu BS, Nishimura DG, Macovski A. Fast spiral coronary artery imaging. Magn Reson Med. 1992;28(2):202–13.

    Article  CAS  Google Scholar 

  17. Bornert P, Stuber M, Botnar RM, et al. Direct comparison of 3D spiral vs. Cartesian gradient-echo coronary magnetic resonance angiography. Magn Reson Med. 2001;46(4):789–94.

    Article  CAS  Google Scholar 

  18. Nayak KS, Pauly JM, Yang PC, Hu BS, Meyer CH, Nishimura DG. Real-time interactive coronary MRA. Magn Reson Med. 2001;46(3):430–5.

    Article  CAS  Google Scholar 

  19. Hardy CJ, Zhao L, Zong X, Saranathan M, Yucel EK. Coronary MR angiography: respiratory motion correction with BACSPIN. J Magn Reson Imaging. 2003;17(2):170–6.

    Article  Google Scholar 

  20. Yang PC, Meyer CH, Terashima M, et al. Spiral magnetic resonance coronary angiography with rapid real-time localization. J Am Coll Cardiol. 2003;41(7):1134–41.

    Article  Google Scholar 

  21. Block KT, Uecker M, Frahm J. Undersampled radial MRI with multiple coils. Iterative image reconstruction using a total variation constraint. Magn Reson Med. 2007;57(6):1086–98.

    Article  Google Scholar 

  22. Lustig M, Donoho DL, Pauly JM. Sparse MRI: The application of compressed sensing for rapid MR imaging. Magn Reson Med. 2007;58(6):1182–95.

    Article  Google Scholar 

  23. Haase A, Matthaei D, Hanicke W, Frahm J. Dynamic digital subtraction imaging using fast low-angle shot MR movie sequence. Radiology. 1986;160(2):537–41.

    Article  CAS  Google Scholar 

  24. Scheffler K, Lehnhardt S. Principles and applications of balanced SSFP techniques. Eur Radiol. 2003;13(11):2409–18.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reza Nezafat .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Akçakaya, M., Tang, M., Nezafat, R. (2019). Cardiac Magnetic Resonance Imaging Physics. In: Kwong, R., Jerosch-Herold, M., Heydari, B. (eds) Cardiovascular Magnetic Resonance Imaging. Contemporary Cardiology. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-8841-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8841-9_1

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-8839-6

  • Online ISBN: 978-1-4939-8841-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics