Skip to main content

Studies of Fatigue and Human Performance in the Laboratory

  • Chapter
  • First Online:
Book cover Fatigue Management

Abstract

Many laboratory studies of fatigue and performance have been done in the last 100 years. Most have examined changes in performance at different times of the day and night (circadian time) or after various types of sleep loss. In general, psychomotor performance declines during early morning hours and improves during the normal day. Performance also declines as time awake increases. These general rules are modified by a number of factors. Certain performance tests such as those requiring vigilance, reaction time, and working memory appear most sensitive to fatigue. However, performance is also modulated by several variables including the length of performance requirement, knowledge of results, and task proficiency level. Performance is also dependent upon environmental influences such as activity level, light level, posture, motivation, and availability of naps and drugs. Finally the close relationship between sleep, fatigue, and performance breaks down in sleep disorders or other situations where the continuity of sleep is destroyed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Patrick GTW, Gilbert JA. On the effect of loss of sleep. Psychol Rev. 1896;3:469–83.

    Article  Google Scholar 

  2. Kleitman N. Sleep and wakefulness. 2nd ed. Chicago: University of Chicago Press; 1963.

    Google Scholar 

  3. Murray E, Williams H, Lubin A. Body temperature and psychological ratings during sleep deprivation. J Exp Psychol. 1958;56:271–3.

    Article  CAS  PubMed  Google Scholar 

  4. Williams HL, Lubin A, Goodnow JJ. Impaired performance with sleep loss. Psychol Monogr. 1959;73(14):1–26.

    Article  Google Scholar 

  5. Carskadon MA, Dement WC. Sleepiness and sleep state on a 90-min schedule. Psychophysiology. 1977;14:127–33.

    Article  CAS  PubMed  Google Scholar 

  6. Carskadon MA, Dement WC. Effects of total sleep loss on sleep tendency. Percept Mot Skills. 1979;48(2):495–506.

    Article  CAS  PubMed  Google Scholar 

  7. Bonnet MH, Webb WB. The return to sleep. Biol Psychol. 1979;8(3):225–33.

    Article  CAS  PubMed  Google Scholar 

  8. Bennett LS, Stradling JR, Davies RJ. A behavioural test to assess daytime sleepiness in obstructive sleep apnoea. J Sleep Res. 1997;6(2):142–5.

    Article  CAS  PubMed  Google Scholar 

  9. Rosa RR, Bonnet MH. Predicting nighttime alertness following prophylactic naps. Sleep Res. 1991;20:417.

    Google Scholar 

  10. Mikulincer M, Babkoff H, Caspy T, Sing H. The effects of 72 hours of sleep loss on psychological variables. Br J Psychol. 1989;80(Pt 2):145–62.

    Article  PubMed  Google Scholar 

  11. Dijk DJ, Duffy JF, Czeisler CA. Circadian and sleep/wake dependent aspects of subjective alertness and cognitive performance. J Sleep Res. 1992;1(2):112–7.

    Article  CAS  PubMed  Google Scholar 

  12. van Eekelen A, Kerkhof G. No interference of task complexity with circadian rhythmicity in a constant routine protocol. Ergonomics. 2003;48:1578–93.

    Article  Google Scholar 

  13. Australian Civil Aviation Authority. Biomathematical fatigue modelling in civil aviation fatigue risk management application guidance. ed 1.0; 2010.

    Google Scholar 

  14. Dean DI, Forger D, Klerman EB. Taking the lag out of jet lag through model-based schedule design. PLoS Comput Biol. 2009;5(6):e1000418. https://doi.org/10.1371/journal.pcbi.1000418.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Dijk DJ, Archer SN. PERIOD3, circadian phenotypes, and sleep homeostasis. Sleep Med Rev. 2010;14(3):151–60.

    Article  PubMed  Google Scholar 

  16. Bonnet MH, Arand DL. Performance and cardiovascular measures in normals with extreme MSLT and subjective sleepiness levels. Sleep. 2005;28:681–9.

    Google Scholar 

  17. Chua E, Tan W, Yeo S, et al. Heart rate variability can be used to estimate sleepiness-related decrements in psychomotor vigilance during total sleep deprivation. Sleep. 2012;35:325–34.

    PubMed  PubMed Central  Google Scholar 

  18. Lim J, Dinges D. A meta-analysis of the impact of short-term sleep deprivation on cognitive variables. Psychol Bull. 2010;136:375–89.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Johnson LC. Sleep deprivation and performance. In: Webb WB, editor. Biological rhythms, sleep, and performance. New York: Wiley; 1982. p. 111–42.

    Google Scholar 

  20. Philibert I. Sleep loss and performance in residents and nonphysicians: a meta-analytic examination. Sleep. 2005;28:1392–402.

    Article  PubMed  Google Scholar 

  21. McKenna BS, Dicjinson DL, Orff HJ, Drummond SP. The effects of one night of sleep deprivation on known-risk and ambiguous-risk decisions. J Sleep Res. 2007;16(3):245–52.

    Article  PubMed  Google Scholar 

  22. Venkatraman V, Chuah YM, Huettel SA, Chee MW. Sleep deprivation elevates expectation of gains and attenuates response to losses following risky decisions. Sleep. 2007;30(5):603–9.

    Article  PubMed  Google Scholar 

  23. Venkatraman V, Huettel S, Chuah L, Payne J, Chee M. Sleep deprivation biases the neural mechanisms underlying economic preferences. J Neurosci. 2011;31:3712–8.

    Article  CAS  PubMed  Google Scholar 

  24. Tucker AM, Whitney P, Belenky G, Hinson JM, Van Dongen HP. Effects of sleep deprivation on dissociated components of executive functioning. Sleep. 2010;33(1):47–57.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Donnell JM. Performance decrement as a function of total sleep loss and task duration. Percept Mot Skills. 1969;29(3):711–4.

    Article  CAS  PubMed  Google Scholar 

  26. Wilkinson RT. Interaction of lack of sleep with knowledge of results, repeated testing, and individual differences. J Exp Psychol. 1961;62:263–71.

    Article  CAS  PubMed  Google Scholar 

  27. Steyvers FJJM, Gaillard AWK. The effects of sleep deprivation and incentives on human performance. Psychol Res. 1993;55:64–70.

    Article  CAS  PubMed  Google Scholar 

  28. Sturm L, Dawson D, Vaughan R, et al. Effects of fatigue on surgeon performance and surgical outcomes: a systematic review. ANZ J Surg. 2011;81:502–9.

    Article  PubMed  Google Scholar 

  29. Ryman DH, Naitoh P, Englund CE. Decrements in logical reasoning performance under conditions of sleep loss and physical exercise: the factor of sentence complexity. Percept Mot Skills. 1985;61(3 Pt 2):1179–88.

    Article  CAS  PubMed  Google Scholar 

  30. Chee MW, Choo WC. Functional imaging of working memory after 24 hr of total sleep deprivation. J Neurosci. 2004;24(19):4560–7.

    Article  CAS  PubMed  Google Scholar 

  31. Pilcher J, Band D, Odle-Dusseau H, Muth E. Human performance under sustained operations and acute sleep deprivation conditions: toward a model of controlled attention. Aviat Space Environ Med. 2007;78:B15–24.

    PubMed  Google Scholar 

  32. Williams HL, Lubin A. Speeded addition and sleep loss. J Exp Psychol. 1967;73:313–7.

    Article  Google Scholar 

  33. Babkoff H, Mikulincer M, Caspy T, Kempinski D, Sing H. The topology of performance curves during 72 hours of sleep loss: a memory and search task. Q J Exp Psychol A. 1988;40(4):737–56.

    Article  CAS  PubMed  Google Scholar 

  34. Bonnet MH, Arand DL. Sleepiness as measured by the MSLT varies as a function of preceding activity. Sleep. 1998;21(5):477–83.

    PubMed  CAS  Google Scholar 

  35. Leproult R, Van Reeth O, Byrne MM, Sturis J, Van Cauter E. Sleepiness, performance, and neuroendocrine function during sleep deprivation: effects of exposure to bright light or exercise. J Biol Rhythms. 1997;12:245–58.

    Article  CAS  PubMed  Google Scholar 

  36. Webb WB, Agnew HWJ. Effects on performance of high and low energy-expenditure during sleep deprivation. Percept Mot Skills. 1973;37(2):511–4.

    Article  CAS  PubMed  Google Scholar 

  37. Dawson D, Encel N, Lushington K. Improving adaptation to simulated night shift: timed exposure to bright light versus daytime melatonin administration. Sleep. 1995;18:11–21.

    Article  CAS  PubMed  Google Scholar 

  38. Dijk D-J, Cajochen C, Borbely A. Effect of a single 3-hour exposure to bright light on core body temperature and sleep in humans. Neurosci Lett. 1991;121:59–62.

    Article  CAS  PubMed  Google Scholar 

  39. Phipps-Nelson J, Redman J, Schlangen L, Rajaratnam S. Blue light exposure reduces objective measures of sleepiness during prolonged nighttime performance testing. Chronobiol Int. 2009;26:891–913.

    Article  PubMed  Google Scholar 

  40. Bonnet MH, Arand DL. Arousal components which differentiate the MWT from the MSLT. Sleep. 2001;24:441–50.

    Article  CAS  PubMed  Google Scholar 

  41. Lindqvist A, Jalonen J, Parviainen P, Antila K, Laitinen LA. Effect of posture on spontaneous and thermally stimulated cardiovascular oscillations. Cardiovasc Res. 1990;24:373–80.

    Article  CAS  PubMed  Google Scholar 

  42. Bonnet MH, Arand DL. Level of arousal and the ability to maintain wakefulness. J Sleep Res. 1999;8:247–54.

    Article  CAS  PubMed  Google Scholar 

  43. Ficca G, Axelsson J, Mollicone D, Muto V, Vitiello M. Naps, cognition and performance. Sleep Med Rev. 2010;14:249–58.

    Article  PubMed  Google Scholar 

  44. Nicholson A, Pascoe P, Roehrs T, et al. Sustained performance with short evening and morning sleeps. Aviat Space Environ Med. 1985;56:105–14.

    PubMed  CAS  Google Scholar 

  45. Mollicone D, Van Dongen H, Rogers N, Dinges D. Response surface mapping of neurobehavioral performance: testing the feasibility of split sleep schedules for space operations. Acta Astronaut. 2008;63:833–40.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Bonnet MH, Gomez S, Wirth O, Arand DL. The use of caffeine versus prophylactic naps in sustained performance. Sleep. 1995;18:97–104.

    Article  CAS  PubMed  Google Scholar 

  47. Brooks A, Lack L. A brief afternoon nap following nocturnal sleep restriction: which nap duration is most recuperative? Sleep. 2006;29:831–40.

    Article  PubMed  Google Scholar 

  48. Bonnet MH, Balkin TJ, Dinges DF, Roehrs T, Rogers NL, Wesensten NJ. The use of stimulants to modify performance during sleep loss: a review by the sleep deprivation and stimulant task force of the American Academy of Sleep Medicine. Sleep. 2005;28(9):1163–87.

    Article  PubMed  Google Scholar 

  49. Wesensten J, Belenky G, Kautz MA, Thorne DR, Reichardt RM, Balkin TJ. Maintaining alertness and performance during sleep deprivation: modafinil versus caffeine. Psychopharmacology (Berl). 2002;159:238–47.

    Article  CAS  Google Scholar 

  50. Wesensten NJ, Killgore WD, Balkin TJ. Performance and alertness effects of caffeine, dextroamphetamine, and modafinil during sleep deprivation. J Sleep Res. 2005;14(3):255–66.

    Article  PubMed  Google Scholar 

  51. Walsh JK, Muehlbach MJ, Humm TM, Dickins QS, Sugerman JL, Schweitzer PK. Effect of caffeine on physiological sleep tendency and ability to sustain wakefulness at night. Psychopharmacology. 1990;101:271–3.

    Article  CAS  PubMed  Google Scholar 

  52. Bonnet MH, Arand DL. The use of prophylactic naps and caffeine to maintain performance during a continuous operation. Ergonomics. 1994;37(6):1009–20.

    Article  CAS  PubMed  Google Scholar 

  53. Bonnet MH, Arand DL. The impact of naps and caffeine on extended nocturnal performance. Physiol Behav. 1994;56(1):103–9.

    Article  CAS  PubMed  Google Scholar 

  54. Wright KP, Badia P, Myers BL, Plenzler SC. Combination of bright light and caffeine as a countermeasure for impaired alertness and performance during extended sleep deprivation. J Sleep Res. 1997;6:26–35.

    Article  PubMed  Google Scholar 

  55. Roehrs T, Beare D, Zorick F, Roth T. Sleepiness and ethanol effects on simulated driving. Alcohol Clin Exp Res. 1994;18:154–8.

    Article  CAS  PubMed  Google Scholar 

  56. Williamson AM, Feyer AM. Moderate sleep deprivation produces impairments in cognitive and motor performance equivalent to legally prescribed levels of alcohol intoxication. Occup Environ Med. 2000;57:649–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Dawson D, Reid K. Fatigue, alcohol and performance impairment. Nature. 1997;388:235. (letter).

    Article  CAS  PubMed  Google Scholar 

  58. Arnedt JT, Wilde GJ, Munt PW, MacLean AW. How do prolonged wakefulness and alcohol compare in the decrements they produce on a simulated driving task? Accid Anal Prev. 2001;33:337–44.

    Article  CAS  PubMed  Google Scholar 

  59. Horne JA, Pettitt AN. High incentive effects on vigilance performance during 72 hours of total sleep deprivation. Acta Psychol. 1985;58:123–39.

    Article  CAS  Google Scholar 

  60. Haslam DR. The incentive effect and sleep deprivation. Sleep. 1983;6(4):362–8.

    Article  CAS  PubMed  Google Scholar 

  61. Belenky G, Wesensten NJ, Thorne DR, et al. Patterns of performance degradation and restoration during sleep restriction and subsequent recovery: a sleep dose-response study. J Sleep Res. 2003;12(1):1–12.

    Article  PubMed  Google Scholar 

  62. Dinges DF, Pack F, Williams K, et al. Cumulative sleepiness, mood disturbance, and psychomotor vigilance performance decrements during a week of sleep restricted to 4-5 hours per night. Sleep. 1997;20:267–77.

    PubMed  CAS  Google Scholar 

  63. Van Dongen HPA, Maislin G, Mullington JM, Dinges DF. The cumulative cost of additional wakefulness: dose-response effects on neurobehavioral functions and sleep physiology from chronic sleep restriction and total sleep deprivation. Sleep. 2003;26:117–26.

    Article  PubMed  Google Scholar 

  64. Bonnet MH, Arand DL. Clinical effects of sleep fragmentation versus sleep deprivation. Sleep Med Rev. 2003;7:297–310.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Wright State University Boonshoft School of Medicine and the Sleep-Wake Disorders Research Institute.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bonnet, M.H., Arand, D.L. (2018). Studies of Fatigue and Human Performance in the Laboratory. In: Sharafkhaneh, A., Hirshkowitz, M. (eds) Fatigue Management. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-8607-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8607-1_3

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-8605-7

  • Online ISBN: 978-1-4939-8607-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics