Skip to main content

Conformal Infinity – Development and Applications

  • Chapter
  • First Online:
Beyond Einstein

Part of the book series: Einstein Studies ((EINSTEIN,volume 14))

Abstract

The notion of conformal infinity grew out of the desire to describe graviational waves in a coordinate independent way. In a sense it abstracts the notion of a far-field in electrodynamics in a geometric way. This contribution describes the development of this idea from the earliest attempts to geometrically capture the notion of gravitational radiation by Felix Pirani to the rigorous definition by Roger Penrose which is universally accepted today. The usefulness of the concept is demonstrated with some applications.

This article is dedicated to the memory of Jürgen Ehlers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Pirani uses Petrov’s classification of the Riemann tensor in terms of three types, which are not enough to characterise all possibilities. Petrov type I corresponds to the types {1111}, {22} and {–}, while Petrov type {II} contains type {211} and {4} and Petrov’s type II is type {31}.

  2. 2.

    The letter \({\mathcal {I}}\) is a ‘\({\mathcal {I}}\)’, from which the colloquial name ‘scri’ for null-infinity derives.

  3. 3.

    The name arises from the fact that when the part of Σ lying inside \(\tilde {\mathcal {M}}\) is considered as a hypersurface with induced geometry from the physical metric \(\tilde g_{ab}\) one finds that it is a manifold with asymptotically constant negative scalar curvature, just like the space-like hyperboloids in Minkowski space.

  4. 4.

    Strictly, speaking this refers only to non-stochastic sources.

References

  • Andersson, L., Chruściel, P. T., & Friedrich, H. (1992). On the regularity of solutions to the Yamabe equation and the existence of smooth hyperboloidal initial data for Einstein’s field equations. Communications in Mathematical Physics, 149, 587–612.

    Article  MathSciNet  Google Scholar 

  • Ashtekar, A. (1987). Asymptotic quantization. Naples: Bibliopolis.

    MATH  Google Scholar 

  • Beck, G. (1925). Zur Theorie binärer Gravitationsfelder. Zeitschrift für Physik, 33, 713–728.

    Article  Google Scholar 

  • Bičák, J., & Schmidt, B. G. (1989). Asymptotically flat radiative space-times with boost-rotation symmetry. Physical Review D: Particles and Fields, 40, 1827–1853.

    Article  MathSciNet  Google Scholar 

  • Bondi, H. (1957). Plane gravitational waves in general relativity. Nature, 179, 1072–1073.

    Article  Google Scholar 

  • Bondi, H., Pirani, F. A. E., & Robinson, I. (1959). Gravitational waves in general relativity III. Exact plane waves. Proceedings of the Royal Society of London A, 251, 519–533.

    Article  MathSciNet  Google Scholar 

  • Bondi, H., van der Burg, M. G. J., & Metzner, A. W. K. (1962). Gravitational waves in general relativity VII. Waves from axi-symmetric isolated systems. Proceedings of the Royal Society of London A, 269, 21–52.

    Article  MathSciNet  Google Scholar 

  • Bonnor, W. B., & Rotenberg, M. A. (1966). Gravitational waves from isolated sources. Proceedings of the Royal Society of London A, 289, 247–274.

    Article  MathSciNet  Google Scholar 

  • Christodoulou, D. (1991). Nonlinear nature of gravitation and gravitational-wave experiments. Physical Review Letters, 67, 1486–1489.

    Article  MathSciNet  Google Scholar 

  • Christodoulou, D., & Klainermann, S. (1993). The global nonlinear stability of the Minkowski space. Princeton: Princeton University Press.

    Google Scholar 

  • Chruściel, P. T., & Delay, E. (2002). Existence of non-trivial, vacuum, asymptotically simple space-times. Classical and Quantum Gravity, 19, L71–L79.

    Article  Google Scholar 

  • Corvino, J. (2000). Scalar curvature deformation and a gluing construction for the Einstein constraint equations. Communications in Mathematical Physics, 214, 137–189.

    Article  MathSciNet  Google Scholar 

  • Cutler, C., & Wald, R. M. (1989). Existence of radiating Einstein-Maxwell solutions which are c on all of \({\mathcal {I}}^-\) and \({\mathcal {I}}^+\). Classical and Quantum Gravity, 6, 453–466.

    Article  MathSciNet  Google Scholar 

  • Dixon, W. G. (1970). Analysis of the Newman-Unti integration procedure for asymptotically flat space-times. Journal of Mathematical Physics, 11, 1238–1248.

    Article  MathSciNet  Google Scholar 

  • Einstein, A. (1916). Die Grundlage der allgemeinen Relativitätstheorie. Annalen der Physik, 49, 769–822.

    Article  Google Scholar 

  • Einstein, A. (1918). Über Gravitationswellen (pp. 154–167). Berlin: Sitzungsberichte der Königlich Preußischen Akademie der Wissenschaften.

    MATH  Google Scholar 

  • Einstein, A., & Rosen, N. (1937). On gravitational waves. Journal of the Franklin Institute, 223, 43–54.

    Article  MathSciNet  Google Scholar 

  • Frauendiener, J. (1989). Geometric description of energy-momentum pseudotensors. Classical Quantum Gravity, 6, L237–L241.

    Article  MathSciNet  Google Scholar 

  • Frauendiener, J. (1992). Note on the memory effect. Classical Quantum Gravity, 9, 1639–1641.

    Article  MathSciNet  Google Scholar 

  • Frauendiener, J. (2000). Numerical treatment of the hyperboloidal initial value problem for the vacuum Einstein equations. III. On the determination of radiation. Classical Quantum Gravity, 17, 373–387.

    Article  MathSciNet  Google Scholar 

  • Frauendiener, J. (2004). Conformal infinity. Living Reviews in Relativity, 7, 1. http://www.livingreviews.org/lrr-2004-1.

    Article  MathSciNet  Google Scholar 

  • Friedrich, H. (1979). On the regular and the asymptotic characteristic initial value problem for Einstein’s vacuum field equations. In M. Walker (Ed.), Proceedings of the third Gregynog relativity workshop, gravitational radiation theory. Max-Planck Green Report, MPI-PAE/Astro 204, Oktober 1979.

    Google Scholar 

  • Friedrich, H. (1986). On the existence of n-geodesically complete or future complete solutions of Einstein’s field equations with smooth asymptotic structure. Communications in Mathematical Physics, 107, 587–609.

    Article  MathSciNet  Google Scholar 

  • Friedrich, H. (1992). Asymptotic structure of space-time. In A. I. Janis & John R. Porter (Eds.), Recent advances in general relativity. Boston: Birkhäuser Inc.

    Google Scholar 

  • Friedrich, H. (1995). Einstein equations and conformal structure: Existence of anti-de Sitter-type space-times. Journal of Geometry and Physics, 17, 125–184.

    Article  MathSciNet  Google Scholar 

  • Friedrich, H. (1998a). Einstein’s equation and conformal structure. In Huggett et al. (1998).

    Google Scholar 

  • Friedrich, H. (1998b). Einstein’s equation and geometric asymptotics. In N. Dadhich & J. Narlikar (Eds.), Gravitation and relativity: At the turn of the millennium. Proceedings of the GR-15 conference. Pune, India: IUCAA.

    Google Scholar 

  • Friedrich, H. (1998c). Gravitational fields near space-like and null infinity. Journal of Geometry and Physics, 24, 83–163.

    Article  MathSciNet  Google Scholar 

  • Friedrich, H. (2002). Conformal Einstein evolution. In J. Frauendiener & H. Friedrich (Eds.), The conformal structure of space-time: Geometry, analysis, numerics (Vol. 604, pp. 1–50), Lecture notes in physics. Heidelberg: Springer

    Google Scholar 

  • Friedrich, H. (2003). Conformal geodesics on vacuum space-times. Communications in Mathematical Physics, 235, 513–543.

    Article  MathSciNet  Google Scholar 

  • Friedrich, H. (2004). Smoothness at null-infinity and the structure of initial data. In P. Chruściel & H. Friedrich (Eds.), The Einstein equations and the large scale behaviour of gravitational fields: 50 years of the Cauchy problem in General Relativity. Basel: Birkhäuser.

    Google Scholar 

  • Geroch, R. (1977). Asymptotic structure of space-time. In F. P. Esposito & L. Witten (Eds.), Asymptotic Structure of space-time. New York: Plenum Press.

    Chapter  Google Scholar 

  • Huggett, S. A., Mason, L. J., Tod, K. P., Tsou, S. S., & Woodhouse, N. M. J. (Eds.) (1998). The geometric universe: Science, geometry and the work of roger penrose. Oxford: Oxford University Press.

    MATH  Google Scholar 

  • Jordan, P., Ehlers, J., & Sachs, R. K. (1961). Beiträge zur Theorie der reinen Gravitationsstrahlung. Abhandlungen der Mathematisch-Naturwissenschaftlichen Klasse. Akademie der Wissenschaften und der Literatur in Mainz, 1, 1–85.

    MATH  Google Scholar 

  • Kennefick, D. (1997). Controversies in the history of the radiation reaction problem in general relativity. arXiv gr-qc/9704002.

    Google Scholar 

  • Klainermann, S., & Nicolò, F. (2003). Peeling properties of asymptotically flat solutions to the Einstein vacuum equations. Classical and Quantum Gravity, 20, 3215–3257.

    Article  MathSciNet  Google Scholar 

  • Lichnérowicz, A. (1958). Sur les ondes et radiations gravitationnelles. Comptes Rendus de l’Académie des Sciences, 246, 893–896.

    MathSciNet  MATH  Google Scholar 

  • Lindblad, H., & Rodnianski, I. (2005). Global existence for the Einstein vacuum equations in wave coordinates. Communications in Mathematical Physics, 256, 43–110.

    Article  MathSciNet  Google Scholar 

  • McVittie, G. C. (1955). Gravitational waves and one-dimensional Einsteinian gas-dynamics. Journal of Rational Mechanics and Analysis, 4, 201–220.

    MathSciNet  MATH  Google Scholar 

  • Newman, E. T. (1961a). New approach to the Einstein and Maxwell-Einstein field equations. Journal of Mathematical Physics, 2, 674–676.

    Article  MathSciNet  Google Scholar 

  • Newman, E. T. (1961b). Some properties of empty space-times. Journal of Mathematical Physics, 2, 324–327.

    Article  MathSciNet  Google Scholar 

  • Newman, E. T. (1976). Heaven and its properties. General Relativity and Gravitation, 7, 107–111.

    Article  MathSciNet  Google Scholar 

  • Newman, E. T., Kozameh, C. N., & Silva-Ortigoza, G. (2008). On extracting physical content from asymptotically flat sapcetime metrics. Classical and Quantum Gravity, 25, 145001.

    Article  MathSciNet  Google Scholar 

  • Newman, E. T., & Penrose, R. (1962). An approach to gravitational radiation by a method of spin coefficients. Journal of Mathematical Physics, 3, 566–578. Errata ibid. 4 (1963), 998.

    Google Scholar 

  • Newman, E. T., & Penrose, R. (1968). New conservation laws for zero rest-mass fields in asymptotically flat space-time. Proceedings of the Royal Society of London A, 305, 175–204.

    Article  Google Scholar 

  • Newman, E. T., & Unti, T. W. J. (1962). Behavior of asymptotically flat empty spaces. Journal of Mathematical Physics, 3, 891–901.

    Article  MathSciNet  Google Scholar 

  • Penrose, R. (1960). A spinor approach to general relativity. Annals of Physics, 10, 171–201.

    Article  MathSciNet  Google Scholar 

  • Penrose, R. (1963). Asymptotic properties of fields and space-times. Physical Review Letters, 10, 66–68.

    Article  MathSciNet  Google Scholar 

  • Penrose, R. (1964a). Conformal treatment of infinity. In C. DeWitt & B. DeWitt (Eds.), Relativity, groups and topology. New York: Gordon and Breach

    Google Scholar 

  • Penrose, R. (1964b). The light cone at infinity. In L. Infeld (Ed.), Relativistic theories of gravitation. Oxford: Pergamon Press

    Google Scholar 

  • Penrose, R. (1965). Zero rest-mass fields including gravitation: Asymptotic behaviour. Proceedings of the Royal Society of London A, 284, 159–203.

    Article  MathSciNet  Google Scholar 

  • Penrose, R. (1999). The central programme of twistor theory. Chaos, Solitons & Fractals, 10, 581–611.

    Article  MathSciNet  Google Scholar 

  • Penrose, R., & Rindler, W. (1986). Spinors and spacetime (Vol. 2). Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Pirani, F. A. E. (1957). Invariant formulation of gravitational radiation theory. Physics Review, 105, 1089–1099.

    Article  MathSciNet  Google Scholar 

  • Rosen, N. (1937). Plane polarised waves in the general theory of relativity. Physikalische Zeitschrift der Sowjetunion, 12, 366–372.

    MATH  Google Scholar 

  • Sachs, R. K. (1960). Propagation laws for null and type III gravitational waves. Zeitschrift für Physik, 157, 462–477.

    Article  Google Scholar 

  • Sachs, R. K. (1961). Gravitational waves in general relativity VI. The outgoing radiation condition. Proceedings of the Royal Society of London A, 264, 309–338.

    Article  MathSciNet  Google Scholar 

  • Sachs, R. K. (1962a). Asymptotic symmetries in gravitational theories. Physics Review, 128, 2851–2864.

    Article  Google Scholar 

  • Sachs, R. K. (1962b). Gravitational waves in general relativity VIII. Waves in asymptotically flat space-time. Proceedings of the Royal Society of London A, 270, 103–127.

    Article  MathSciNet  Google Scholar 

  • Sachs, R. K. (1964). Characteristic initial value problem for gravitational theory. In L. Infeld (Ed.), Relativistic theories of gravitation. Oxford: Pergamon Press.

    Google Scholar 

  • Scheidegger, A. E. (1953). Gravitational motion. Reviews of Modern Physics, 25, 451–468.

    Article  MathSciNet  Google Scholar 

  • Schmidt, B. G. (1978). Asymptotic structure of isolated systems. In J. Ehlers (Ed.), Isolated gravitating systems in general relativity. New York: Academic Press

    Google Scholar 

  • Taub, A. H. (1951). Empty space-times admitting a three parameter group of motions. Annals of Mathematics, 53, 472–490.

    Article  MathSciNet  Google Scholar 

  • Trautman, A. (1958a). Boundary conditions at infinity for physical theories. Bulletin de l’Académie Polonaise des Sciences III, 6, 403–406.

    MathSciNet  MATH  Google Scholar 

  • Trautman, A. (1958b). Radiation and boundary conditions in the theory of gravitation. Bulletin de l’Académie Polonaise des Sciences III, 6, 407–412.

    MathSciNet  MATH  Google Scholar 

  • Trautman, A. (1958c). On gravitational radiation damping. Bulletin de l’Académie Polonaise des Sciences III, 6, 627–633.

    MATH  Google Scholar 

Download references

Acknowledgements

The author is very grateful to the organisers of the conference ‘Beyond Einstein’ for the opportunity to present the material of this contribution. Furthermore, it is a pleasure to thank Ted Newman, Roger Penrose and Engelbert Schücking for sharing their memories of the development of the subject.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jörg Frauendiener .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Frauendiener, J. (2018). Conformal Infinity – Development and Applications. In: Rowe, D., Sauer, T., Walter, S. (eds) Beyond Einstein. Einstein Studies, vol 14. Birkhäuser, New York, NY. https://doi.org/10.1007/978-1-4939-7708-6_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7708-6_16

  • Published:

  • Publisher Name: Birkhäuser, New York, NY

  • Print ISBN: 978-1-4939-7706-2

  • Online ISBN: 978-1-4939-7708-6

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics