Skip to main content

DTI Analysis Methods: Voxel-Based Analysis

  • Chapter
Diffusion Tensor Imaging

Abstract

Voxel-based analysis (VBA) of diffusion tensor imaging (DTI) data permits the investigation of voxel-wise differences or changes in DTI metrics in every voxel of a brain dataset. It is applied primarily in the exploratory analysis of hypothesized group-level alterations in DTI parameters, as it does not require prior knowledge of where in the brain such changes may occur. Whilst VBA is a widely used, powerful preclinical research tool, there are a number of methodological issues that should be considered when applying the technique to study (pre)clinical populations. This chapter reviews the component steps of a typical VBA study pipeline and includes a comprehensive introduction to image registration, DTI template/atlas selection, smoothing, and statistical analysis. The popular tract-based spatial (TBSS) technique is introduced and contrasted with traditional VBA approaches. At each stage, guidance on optimizing parameter settings is presented along with the pros and cons of different methods to assist the reader in choosing the best approach for their application.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fitzpatrick J, Hill DLM, Maurer Jr C. Chapter 8. Image registration. In: Medical image processing and analysis, Handbook of medical image registration, vol. 2. Bellingham, WA: SPIE Press; 2000. p. 447–513.

    Google Scholar 

  2. Maintz JBA, Viergever MA. A survey of medical image registration. Med Image Anal. 1998;2:1–36.

    Article  CAS  PubMed  Google Scholar 

  3. Peeters THJM, Rodrigues PR, Vilanova A, ter Haar Romeny BM. Analysis of distance/similarity measures for diffusion tensor imaging, visualization and processing of tensor fields. New York, NY: Springer; 2006.

    Google Scholar 

  4. Alexander DC, Gee JC. Elastic matching of diffusion tensor MRIs. Comput Vis Image Underst. 2000;77:233–50.

    Article  Google Scholar 

  5. Muñoz-Moreno E, Cárdenes-Almeida R, Martin-Fernandez M. Review of techniques for registration of diffusion tensor imaging, tensors in image processing and computer vision. New York, NY: Springer; 2009.

    Google Scholar 

  6. Park HJ, Kubicki M, Shenton ME, Guimond A, McCarley RW, Maier SE, Kikinis R, Jolesz FA, Westin CF. Spatial normalization of diffusion tensor MRI using multiple channels. Neuroimage. 2003;20:1995–2009.

    Article  PubMed Central  PubMed  Google Scholar 

  7. Van Hecke W, Leemans A, D’Agostino E, De Backer S, Vandervliet E, Parizel PM, Sijbers J. Nonrigid coregistration of diffusion tensor images using a viscous fluid model and mutual information. IEEE Trans Med Imaging. 2007;26:1598–612.

    Article  PubMed  Google Scholar 

  8. Sage CA, Van Hecke W, Peeters R, Sijbers J, Robberecht W, Parizel P, Marchal G, Leemans A, Sunaert S. Quantitative diffusion tensor imaging in amyotrophic lateral sclerosis: revisited. Hum Brain Mapp. 2009;30(11):3657–75.

    Article  PubMed  Google Scholar 

  9. Guimond A, Guttmann CRG, Warfield SK, Westin CF. Deformable registration of DT MRI data based on transformation invariant tensor characteristics. In: International symposium on biomedical imaging. Washington, DC: IEEE; 2002. p. 761–4.

    Chapter  Google Scholar 

  10. Ruiz-Alzola J, Westin CF, Warfield SK, Alberola C, Maier S, Kikinis R. Nonrigid registration of 3D tensor medical data. Med Image Anal. 2002;6:143–61.

    Article  CAS  PubMed  Google Scholar 

  11. Rohde GK, Pajevic S, Pierpaoli C, Basser PJ. A comprehensive approach for multichannel image registration. Biomedical image registration. Berlin: Springer; 2003. p. 214–23.

    Book  Google Scholar 

  12. Zhang H, Yushkevich PA, Alexander DC, Gee JC. Deformable registration of diffusion tensor MR images with explicit orientation optimization. Med Image Anal. 2006;10:764–85.

    Article  PubMed  Google Scholar 

  13. Chiang MC, Leow AD, Klunder AD, Dutton RA, Barysheva M, Rose SE, McMahon KL, de Zubicaray GI, Toga AW, Thompson PM. Fluid registration of diffusion tensor images using information theory. IEEE Trans Med Imaging. 2008;27:442–56.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Verma R, Davatzikos C. Matching of diffusion tensor images using Gabor features. In: IEEE international symposium on biomedical imaging: nano to macro, vol. 391. Washington, DC: IEEE; 2004. p. 396–9.

    Google Scholar 

  15. Yap PT, Wu G, Zhu H, Lin W, Shen D. TIMER: tensor image morphing for elastic registration. Neuroimage. 2009;47:549–63.

    Article  PubMed Central  PubMed  Google Scholar 

  16. Yap PT, Wu G, Zhu H, Lin W, Shen D. F-TIMER: fast tensor image morphing for elastic registration. IEEE Trans Med Imaging. 2010;29:1192–203.

    Article  PubMed  Google Scholar 

  17. Leemans A, Sijbers J, Vandervliet E, Parizel PM. Multiscale white matter fiber tract coregistration: a new feature-based approach to align diffusion tensor data. Magn Reson Med. 2006;55:1414–23.

    Article  CAS  PubMed  Google Scholar 

  18. Goodlett C, Davis B, Jean R, Gilmore J, Gerig G. Improved correspondence for DTI population studies via unbiased atlas building. In: MICCAI, 2006. Berlin: Springer; 2006. p. 260–7.

    Google Scholar 

  19. Li H, Xue Z, Guo L, Wong SC. Simultaneous consideration of spatial deformation and tensor orientation in diffusion tensor image registration using local fast marching patterns. In: Prince J, Pham D, Myers K, editors. Information processing in medical imaging. Berlin: Springer; 2009. p. 63–75.

    Chapter  Google Scholar 

  20. O’Donnell LJ, Westin CF, Golby AJ. Tract-based morphometry for white matter group analysis. Neuroimage. 2009;45(3):832–44.

    Article  PubMed Central  PubMed  Google Scholar 

  21. Zhang S, Peng H, Dawe JR, Arfanakis K. Enhanced ICBM diffusion tensor template of the human brain. Neuroimage. 2011;54:974–84.

    Article  PubMed Central  PubMed  Google Scholar 

  22. Van Hecke W, Leemans A, Sage CA, Emsell L, Veraart J, Sijbers J, Sunaert S, Parizel PM. The effect of template selection on diffusion tensor voxel-based analysis results. Neuroimage. 2011;55(2):566–73.

    Article  PubMed  Google Scholar 

  23. Zhang S, Arfanakis K. Role of standardized and study-specific human brain diffusion tensor templates in inter-subject spatial normalization. J Magn Reson Imaging. 2013;37(2):372–81.

    Article  PubMed Central  PubMed  Google Scholar 

  24. Collins DL, Neelin P, Peters TM, Evans AC. Automatic 3D intersubject registration of MR volumetric data in standardized Talairach space. Comput Assist Tomogr. 1994;18(2):192–205.

    Article  CAS  Google Scholar 

  25. Evans AC, Collins DL, Mills SR, Brown ED, Kelly RL, Peters TM. 3D statistical neuroanatomical models from 305 MRI volumes. In: IEEE nuclear science symposium and medical imaging conference. Washington, DC: IEEE; 1993. p. 1813–7.

    Google Scholar 

  26. Mazziotta JC, Toga AW, Evans A, Fox P, Lancaster J. A probabilistic atlas of the human brain: theory and rationale for its development. The International Consortium for Brain Mapping (ICBM). Neuroimage. 1995;2(2):89–101.

    Article  CAS  PubMed  Google Scholar 

  27. Mori S, Oishi K, Jiang H, et al. Stereotaxic white matter atlas based on diffusion tensor imaging in an ICBM template. Neuroimage. 2008;40:570–82.

    Article  PubMed Central  PubMed  Google Scholar 

  28. Peng H, Orlichenko A, Dawe RJ, Agam G, Zhang S, Arfanakis K. Development of a human brain diffusion tensor template. Neuroimage. 2009;46(4):967–80.

    Article  PubMed Central  PubMed  Google Scholar 

  29. Zhang H, Yushkevich PA, Rueckert D, Gee JC. Unbiased white matter atlas construction using diffusion tensor images. Med Image Comput Comput Assist Interv. 2007;10(Pt 2):211–8.

    PubMed  Google Scholar 

  30. Van Hecke W, Sijbers J, D’Agostino E, Maes F, De Backer S, Vandervliet E, Parizel PM, Leemans A. On the construction of an inter-subject diffusion tensor magnetic resonance atlas of the healthy human brain. Neuroimage. 2008;43(1):69–80.

    Article  PubMed  Google Scholar 

  31. Jones DK, Symms MR, Cercignani M, Howard RJ. The effect of filter size on VBM analyses of DT-MRI data. Neuroimage. 2005;26(2):546–54.

    Article  PubMed  Google Scholar 

  32. Van Hecke W, Leemans A, De Backer S, Jeurissen B, Parizel PM, Sijbers J. Comparing isotropic and anisotropic smoothing for voxel-based DTI analyses: a simulation study. Hum Brain Mapp. 2010;31(1):98–114.

    PubMed  Google Scholar 

  33. Rosenfeld A, Kak AC. Digital picture processing 2. Orlando, FL: Academic; 1982. p. 42.

    Google Scholar 

  34. Lee JE, Chung MK, Lazar M, DuBray MB, Kim J, Bigler ED, Lainhart JE, Alexander AL. A study of diffusion tensor imaging by tissue-specific, smoothing-compensated voxel-based analysis. Neuroimage. 2009;44(3):870–83.

    Article  PubMed Central  PubMed  Google Scholar 

  35. Worsley KJ, Evans AC, Marrett S, Neelin P. A three-dimensional statistical analysis for CBF activation studies in human brain. J Cereb Blood Flow Metab. 1992;12:900–18.

    Article  CAS  PubMed  Google Scholar 

  36. Genovese CR, Lazar NA, Nichols T. Thresholding of statistical maps in functional neuroimaging using the false discovery rate. Neuroimage. 2002;15:870–8.

    Article  PubMed  Google Scholar 

  37. Nichols TE, Holmes AP. Nonparametric permutation tests for functional neuroimaging: a primer with examples. Hum Brain Mapp. 2002;15:1–25.

    Article  PubMed  Google Scholar 

  38. Jones DK, Chitnis XA, Job D, Khong PL, Leung LT, Marenco S, Smith SM, Symms MR. In Proceedings of the 15th Annual Meeting ISMRM. Berlin, 2007; 74.

    Google Scholar 

  39. Smith SM, Jenkinson M, Johansen-Berg H, Rueckert D, Nichols TE, Mackay CE, Watkins KE, Ciccarelli O, Cader MZ, Matthews PM, et al. Tract-based spatial statistics: voxelwise analysis of multisubject diffusion data. Neuroimage. 2006;31:1487–505.

    Article  PubMed  Google Scholar 

  40. Zalesky A. Moderating registration misalignment in voxelwise comparisons of DTI data: a performance evaluation of skeleton projection. Magn Reson Imaging. 2011;29:111–25.

    Article  PubMed  Google Scholar 

  41. Keihaninejad S, Ryan NS, Malone IB, Modat M, Cash D, Ridgway GR, Zhang H, Fox NC, Ourselin S. The importance of group-wise registration in tract based spatial statistics study of neurodegeneration: a simulation study in Alzheimer’s disease. PLoS One. 2012;7(11):e45996.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Edden RA, Jones DK. Spatial and orientational heterogeneity in the statistical sensitivity of skeleton-based analyses of diffusion tensor MR imaging data. J Neurosci Methods. 2011;201:213–9.

    Article  PubMed Central  PubMed  Google Scholar 

  43. Jones DK, Cercignani M. Twenty-five pitfalls in the analysis of diffusion MRI data. NMR Biomed. 2010;23(7):803–20.

    Article  PubMed  Google Scholar 

  44. Jeurissen B, Leemans A, Tournier JD, Jones DK, Sijbers J. Investigating the prevalence of complex fiber configurations in white matter tissue with diffusion magnetic resonance imaging. Hum Brain Mapp. 2013;34(11):2747–66.

    Article  PubMed  Google Scholar 

  45. Preti MG, Laganà MM, Baglio F, Griffanti L, Nemni R, Cecconi P, Baselli G. Comparison between skeleton-based and atlas-based approach in the assessment of corpus callosum damages in Mild Cognitive Impairment and Alzheimer Disease. Conf Proc IEEE Eng Med Biol Soc. 2011;2011:7808–11.

    PubMed  Google Scholar 

  46. Schwarz CG, Reid RI, Gunter JL, Senjem ML, Przybelski SA, Zuk SM, Whitwell JL, Vemuri P, Josephs KA, Kantarci K, Thompson PM, Petersen RC, Jack Jr CR, Alzheimer’s Disease Neuroimaging Initiative. Improved DTI registration allows voxel-based analysis that outperforms Tract-Based Spatial Statistics. Neuroimage. 2014;94:65–78.

    Article  PubMed Central  PubMed  Google Scholar 

  47. Lipton ML, Kim N, Park YK, Hulkower MB, Gardin TM, et al. Robust detection of traumatic axonal injury in individual mild traumatic brain injury patients: intersubject variation, change over time and bidirectional changes in anisotropy. Brain Imaging Behav. 2012;6:329–42.

    Article  PubMed  Google Scholar 

  48. Kim N, Branch CA, Kim M, Lipton ML. Whole brain approaches for identification of microstructural abnormalities in individual patients: comparison of techniques applied to mild traumatic brain injury. PLoS One. 2013;8(3):e59382.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Patel SA, Hum BA, Gonzalez CF, Schwartzman RJ, Faro SH, et al. Application of voxelwise analysis in the detection of regions of reduced fractional anisotropy in multiple sclerosis patients. J Magn Reson Imaging. 2007;26:552–6.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wim Van Hecke PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this chapter

Cite this chapter

Van Hecke, W., Leemans, A., Emsell, L. (2016). DTI Analysis Methods: Voxel-Based Analysis. In: Van Hecke, W., Emsell, L., Sunaert, S. (eds) Diffusion Tensor Imaging. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-3118-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3118-7_10

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-3117-0

  • Online ISBN: 978-1-4939-3118-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics