Skip to main content

Incorporation of Non-Canonical Amino Acids

  • Chapter
  • First Online:
Novel Chemical Tools to Study Ion Channel Biology

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 869))

Abstract

In this chapter we discuss the strengths, caveats and technical considerations of three approaches for reprogramming the chemical composition of selected amino acids within a membrane protein. In vivo nonsense suppression in the Xenopus laevis oocyte, evolved orthogonal tRNA and aminoacyl-tRNA synthetase pairs and protein ligation for biochemical production of semisynthetic proteins have been used successfully for ion channel and receptor studies. The level of difficulty for the application of each approach ranges from trivial to technically demanding, yet all have untapped potential in their application to membrane proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adesnik H, Nicoll RA, England PM (2005) Photoinactivation of native AMPA receptors reveals their real-time trafficking. Neuron 48:977–985. doi:10.1016/j.neuron.2005.11.030

    Article  CAS  PubMed  Google Scholar 

  • Ahern CA, Eastwood AL, Dougherty DA, Horn R (2008) Electrostatic contributions of aromatic residues in the local anesthetic receptor of voltage-gated sodium channels. Circ Res 102:86–94. doi:10.1161/CIRCRESAHA.107.160663

    Article  CAS  PubMed  Google Scholar 

  • Ai H-W, Shen W, Sagi A et al (2011) Probing protein–protein interactions with a genetically encoded photo-crosslinking amino acid. Chembiochem 12:1854–1857

    Article  CAS  PubMed  Google Scholar 

  • Amrani N, Sachs MS, Jacobson A (2006) Early nonsense: mRNA decay solves a translational problem. Nat Rev Mol Cell Biol 7:415–425. doi:10.1038/nrm1942

    Article  CAS  PubMed  Google Scholar 

  • Anderson JC, Schultz PG (2003) Adaptation of an orthogonal archaeal leucyl-tRNA and synthetase pair for four-base, amber, and opal suppression. Biochemistry (Mosc) 42:9598–9608. doi:10.1021/bi034550w

    Article  CAS  Google Scholar 

  • Anderson JC, Wu N, Santoro SW et al (2004) An expanded genetic code with a functional quadruplet codon. Proc Natl Acad Sci U S A 101:7566–7571. doi:10.1073/pnas.0401517101

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Barrett OPT, Chin JW (2010) Evolved orthogonal ribosome purification for in vitro characterization. Nucleic Acids Res 38:2682–2691. doi:10.1093/nar/gkq120

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Beene DL, Brandt GS, Zhong W et al (2002) Cation-pi interactions in ligand recognition by serotonergic (5-HT3A) and nicotinic acetylcholine receptors: the anomalous binding properties of nicotine. Biochemistry (Mosc) 41:10262–10269

    Article  CAS  Google Scholar 

  • Beene DL, Price KL, Lester HA et al (2004) Tyrosine residues that control binding and gating in the 5-hydroxytryptamine3 receptor revealed by unnatural amino acid mutagenesis. J Neurosci Off J Soc Neurosci 24:9097–9104. doi:10.1523/JNEUROSCI.2429-04.2004

    Article  CAS  Google Scholar 

  • Bianco A, Townsley FM, Greiss S et al (2012) Expanding the genetic code of Drosophila melanogaster. Nat Chem Biol 8:748–750. doi:10.1038/nchembio.1043

    Article  CAS  PubMed  Google Scholar 

  • Blight SK, Larue RC, Mahapatra A et al (2004) Direct charging of tRNA(CUA) with pyrrolysine in vitro and in vivo. Nature 431:333–335. doi:10.1038/nature02895

    Article  CAS  PubMed  Google Scholar 

  • Boos D, Kuffer C, Lenobel R et al (2008) Phosphorylation-dependent binding of cyclin B1 to a Cdc6-like domain of human separase. J Biol Chem 283:816–823. doi:10.1074/jbc.M706748200

    Article  CAS  PubMed  Google Scholar 

  • Braig D, Bar C, Thumfart JO, Koch HG (2009) Two cooperating helices constitute the lipid-binding domain of the bacterial SRP receptor. J Mol Biol 390:401–413. doi:10.1016/j.jmb.2009.04.061

    Article  CAS  PubMed  Google Scholar 

  • Brick P, Bhat TN, Blow DM (1989) Structure of tyrosyl-tRNA synthetase refined at 2.3 A resolution. Interaction of the enzyme with the tyrosyl adenylate intermediate. J Mol Biol 208:83–98

    Article  CAS  PubMed  Google Scholar 

  • Cashin AL, Torrice MM, McMenimen KA et al (2007) Chemical-scale studies on the role of a conserved aspartate in preorganizing the agonist binding site of the nicotinic acetylcholine receptor. Biochemistry (Mosc) 46:630–639. doi:10.1021/bi061638b

    Article  CAS  Google Scholar 

  • Cellitti SE (2008) In vivo incorporation of unnatural amino acids to probe structure, dynamics, and ligand binding in a large protein by nuclear magnetic resonance spectroscopy. J Am Chem Soc 130:9268–9281. doi:10.1021/ja801602q

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cha A, Bezanilla F (1997) Characterizing voltage-dependent conformational changes in the Shaker K+ channel with fluorescence. Neuron 19:1127–1140

    Article  CAS  PubMed  Google Scholar 

  • Chang H, Han M, Huang W et al (2013) Light-induced protein translocation by genetically encoded unnatural amino acid in Caenorhabditis elegans. Protein Cell 4:883–886. doi:10.1007/s13238-013-3118-6

    Article  PubMed  Google Scholar 

  • Chatterjee A, Xiao H, Schultz PG (2012) Evolution of multiple, mutually orthogonal prolyl-tRNA synthetase/tRNA pairs for unnatural amino acid mutagenesis in Escherichia coli. Proc Natl Acad Sci U S A 109:14841–14846. doi:10.1073/pnas.1212454109

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chatterjee A, Sun SB, Furman JL et al (2013a) A versatile platform for single- and multiple-unnatural amino acid mutagenesis in Escherichia coli. Biochemistry (Mosc) 52:1828–1837. doi:10.1021/bi4000244

    Article  CAS  Google Scholar 

  • Chatterjee A, Xiao H, Yang P-Y et al (2013b) A tryptophanyl-tRNA synthetase/tRNA pair for unnatural amino acid mutagenesis in E. coli. Angew Chem Int Ed Engl 52:5106–5109. doi:10.1002/anie.201301094

    Article  CAS  PubMed  Google Scholar 

  • Chen S, Schultz P, Brock A (2007) An improved system for the generation and analysis of mutant proteins containing unnatural amino acids in Saccharomyces cerevisiae. J Mol Biol 371:112

    Article  CAS  PubMed  Google Scholar 

  • Chen PR, Groff D, Guo J et al (2009) A facile system for encoding unnatural amino acids in mammalian cells. Angew Chem Int Ed Engl 48:4052–4055. doi:10.1002/anie.200900683

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chin JW (2003) An expanded eukaryotic genetic code. Science 301:964–967. doi:10.1126/science.1084772

    Article  CAS  PubMed  Google Scholar 

  • Chin JW, Martin AB, King DS et al (2002a) Addition of a photocrosslinking amino acid to the genetic code of Escherichia coli. Proc Natl Acad Sci U S A 99:11020–11024. doi:10.1073/pnas.172226299

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chin JW, Martin AB, King DS et al (2002b) Addition of a photocrosslinking amino acid to the genetic code of Escherichiacoli. Proc Natl Acad Sci U S A 99:11020–11024. doi:10.1073/pnas.172226299

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chin JW, Santoro SW, Martin AB et al (2002c) Addition of p-azido-L-phenylalanine to the genetic code of Escherichia coli. J Am Chem Soc 124:9026–9027

    Article  CAS  PubMed  Google Scholar 

  • Chin JW, Cropp TA, Chu S et al (2003) Progress toward an expanded eukaryotic genetic code. Chem Biol 10:511–519

    Article  CAS  PubMed  Google Scholar 

  • Chou C, Uprety R, Davis L et al (2011) Genetically encoding an aliphatic diazirine for protein photocrosslinking. Chem Sci 2:480–483

    Article  CAS  Google Scholar 

  • Cload ST, Liu DR, Froland WA, Schultz PG (1996) Development of improved tRNAs for in vitro biosynthesis of proteins containing unnatural amino acids. Chem Biol 3:1033–1038

    Article  CAS  PubMed  Google Scholar 

  • Coin I, Perrin MH, Vale WW, Wang L (2011) Photo-cross-linkers incorporated into G-protein-coupled receptors in mammalian cells: a ligand comparison. Angew Chem Int Ed Engl 50:8077–8081. doi:10.1002/anie.201102646

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Coin I, Katritch V, Sun T et al (2013) Genetically encoded chemical probes in cells reveal the binding path of urocortin-I to CRF class B GPCR. Cell 155:1258–1269. doi:10.1016/j.cell.2013.11.008

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cooley RB, Karplus PA, Mehl RA (2014) Gleaning unexpected fruits from hard-won synthetases: probing principles of permissivity in non-canonical amino acid-tRNA synthetases. Chembiochem Eur J Chem Biol 15:1810–1819. doi:10.1002/cbic.201402180

    Article  CAS  Google Scholar 

  • Cropp TA, Anderson JC, Chin JW (2007) Reprogramming the amino-acid substrate specificity of orthogonal aminoacyl-tRNA synthetases to expand the genetic code of eukaryotic cells. Nat Protoc 2:2590–2600. doi:10.1038/nprot.2007.378

    Article  CAS  PubMed  Google Scholar 

  • Daggett KA, Sakmar TP (2011) Site-specific in vitro and in vivo incorporation of molecular probes to study G-protein-coupled receptors. Curr Opin Chem Biol 15:392–398. doi:10.1016/j.cbpa.2011.03.010

    Article  CAS  PubMed  Google Scholar 

  • Davis L, Chin JW (2012) Designer proteins: applications of genetic code expansion in cell biology. Nat Rev Mol Cell Biol 13:168–182. doi:10.1038/nrm3286

    CAS  PubMed  Google Scholar 

  • Devaraneni PK, Komarov AG, Costantino CA et al (2013) Semisynthetic K+ channels show that the constricted conformation of the selectivity filter is not the C-type inactivated state. Proc Natl Acad Sci 110:15698–15703. doi:10.1073/pnas.1308699110

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dormán G, Prestwich GD (1994) Benzophenone photophores in biochemistry. Biochemistry (Mosc) 33:5661–5673

    Article  Google Scholar 

  • Dougherty DA (1996) Cation-pi interactions in chemistry and biology: a new view of benzene, Phe, Tyr, and Trp. Science 271:163–168

    Article  CAS  PubMed  Google Scholar 

  • Dougherty DA, Van Arnam EB (2014) In vivo incorporation of non-canonical amino acids by using the chemical aminoacylation strategy: a broadly applicable mechanistic tool. Chembiochem Eur J Chem Biol 15:1710–1720. doi:10.1002/cbic.201402080

    Article  CAS  Google Scholar 

  • Duca M, Chen S, Hecht SM (2008) Aminoacylation of transfer RNAs with one and two amino acids. Methods San Diego Calif 44:87–99. doi:10.1016/j.ymeth.2007.10.007

    Article  CAS  Google Scholar 

  • Edwards H, Schimmel P (1990) A bacterial amber suppressor in Saccharomyces cerevisiae is selectively recognized by a bacterial aminoacyl-tRNA synthetase. Mol Cell Biol 10:1633

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • England P, Zhang Y, Dougherty D, Lester H (1999) Backbone mutations in transmembrane domains of a ligand-gated ion channel: implications for the mechanism of gating. Cell 96:89

    Article  CAS  PubMed  Google Scholar 

  • Farrell IS, Toroney R, Hazen JL et al (2005) Photo-cross-linking interacting proteins with a genetically encoded benzophenone. Nat Methods 2:377–384. doi:10.1038/nmeth0505-377

    Article  CAS  PubMed  Google Scholar 

  • Fekner T, Li X, Chan MK (2010) Pyrrolysine analogs for translational incorporation into proteins. Eur J Org Chem 2010:4171–4179. doi:10.1002/ejoc.201000204

    Article  CAS  Google Scholar 

  • Furter R (1998a) Expansion of the genetic code: site-directed p-fluoro-phenylalanine incorporation in Escherichia coli. Protein Sci 7:419

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Furter R (1998b) Expansion of the genetic code: site-directed p-fluoro-phenylalanine incorporation in Escherichia coli. Protein Sci Publ Protein Soc 7:419–426. doi:10.1002/pro.5560070223

    Article  CAS  Google Scholar 

  • Galli G, Hofstetter H, Birnstiel ML (1981) Two conserved sequence blocks within eukaryotic tRNA genes are major promoter elements. Nature 294:626–631

    Article  CAS  PubMed  Google Scholar 

  • Gallivan JP, Dougherty DA (1999) Cation-pi interactions in structural biology. Proc Natl Acad Sci U S A 96:9459–9464

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gallivan JP, Dougherty DA (2000) A computational study of cation–p Interactions vs salt bridges in aqueous media: implications for protein engineering. J Am Chem Soc 122:870–874. doi:10.1021/ja991755c

    Article  CAS  Google Scholar 

  • Gautier A (2010) Genetically encoded photocontrol of protein localization in mammalian cells. J Am Chem Soc 132:4086–4088. doi:10.1021/ja910688s

    Article  CAS  PubMed  Google Scholar 

  • Greiss S, Chin JW (2011) Expanding the genetic code of an animal. J Am Chem Soc 133:14196–14199. doi:10.1021/ja2054034

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Grunbeck A, Huber T, Sachdev P, Sakmar TP (2011) Mapping the ligand-binding site on a G protein-coupled receptor (GPCR) using genetically encoded photocrosslinkers. Biochemistry (Mosc) 50:3411–3413. doi:10.1021/bi200214r

    Article  CAS  Google Scholar 

  • Grunbeck A, Huber T, Abrol R et al (2012) Genetically encoded photo-cross-linkers map the binding site of an allosteric drug on a G protein-coupled receptor. ACS Chem Biol 7:967–972. doi:10.1021/cb300059z

    Article  CAS  PubMed  Google Scholar 

  • Hammill JT, Miyake-Stoner S, Hazen JL et al (2007) Preparation of site-specifically labeled fluorinated proteins for 19F-NMR structural characterization. Nat Protoc 2:2601–2607

    Article  CAS  PubMed  Google Scholar 

  • Hao B, Gong W, Ferguson TK et al (2002) A new UAG-encoded residue in the structure of a methanogen methyltransferase. Science 296:1462–1466. doi:10.1126/science.1069556

    Article  CAS  PubMed  Google Scholar 

  • Haslberger T (2007) M domains couple the ClpB threading motor with the DnaK chaperone activity. Mol Cell 25:247–260. doi:10.1016/j.molcel.2006.11.008

    Article  CAS  PubMed  Google Scholar 

  • Hecht S, Alford B, Kuroda Y, Kitano S (1978) “Chemical aminoacylation” of tRNA’s. J Biol Chem 253:4517

    CAS  PubMed  Google Scholar 

  • Hino N, Oyama M, Sato A et al (2011) Genetic incorporation of a photo-crosslinkable amino acid reveals novel protein complexes with GRB2 in mammalian cells. J Mol Biol 406:343–353. doi:10.1016/j.jmb.2010.12.022

    Article  CAS  PubMed  Google Scholar 

  • Hohsaka T, Ashizuka Y, Sisido M (1999) Incorporation of two nonnatural amino acids into proteins through extension of the genetic code. Nucleic Acids Symp Ser 79–80

    Google Scholar 

  • Hsieh J, Fire A (2000) Recognition and silencing of repeated DNA. Annu Rev Genet 34:187–204. doi:10.1146/annurev.genet.34.1.187

    Article  CAS  PubMed  Google Scholar 

  • Huang Y, Russell WK, Wan W et al (2010) A convenient method for genetic incorporation of multiple noncanonical amino acids into one protein in Escherichia coli. Mol Biosyst 6:683–686. doi:10.1039/b920120c

    Article  CAS  PubMed  Google Scholar 

  • Ibba M, Soll D (2000) Aminoacyl-tRNA synthesis. Annu Rev Biochem 69:617–650. doi:10.1146/annurev.biochem.69.1.617

    Article  CAS  PubMed  Google Scholar 

  • Isaacs FJ, Carr PA, Wang HH et al (2011) Precise manipulation of chromosomes in vivo enables genome-wide codon replacement. Science 333:348–353. doi:10.1126/science.1205822

    Article  CAS  PubMed  Google Scholar 

  • James CM, Ferguson TK, Leykam JF, Krzycki JA (2001) The amber codon in the gene encoding the monomethylamine methyltransferase isolated from Methanosarcina barkeri is translated as a sense codon. J Biol Chem 276:34252–34258. doi:10.1074/jbc.M102929200

    Article  CAS  PubMed  Google Scholar 

  • Johnson DBF, Xu J, Shen Z et al (2011) RF1 knockout allows ribosomal incorporation of unnatural amino acids at multiple sites. Nat Chem Biol 7:779–786. doi:10.1038/nchembio.657

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kaiser CM (2006) Real-time observation of trigger factor function on translating ribosomes. Nature 444:455–460. doi:10.1038/nature05225

    Article  CAS  PubMed  Google Scholar 

  • Kalstrup T, Blunck R (2013) Dynamics of internal pore opening in K(V) channels probed by a fluorescent unnatural amino acid. Proc Natl Acad Sci U S A 110:8272–8277. doi:10.1073/pnas.1220398110

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kang J-Y, Kawaguchi D, Coin I et al (2013) In vivo expression of a light-activatable potassium channel using unnatural amino acids. Neuron 80:358–370. doi:10.1016/j.neuron.2013.08.016

    Article  CAS  PubMed  Google Scholar 

  • Klippenstein V, Ghisi V, Wietstruk M, Plested AJR (2014) Photoinactivation of glutamate receptors by genetically encoded unnatural amino acids. J Neurosci Off J Soc Neurosci 34:980–991. doi:10.1523/JNEUROSCI.3725–13.2014

    Article  CAS  Google Scholar 

  • Kobayashi T, Nureki O, Ishitani R et al (2003) Structural basis for orthogonal tRNA specificities of tyrosyl-tRNA synthetases for genetic code expansion. Nat Struct Biol 10:425

    Article  CAS  PubMed  Google Scholar 

  • Kowal AK, Kohrer C, RajBhandary UL (2001) Twenty-first aminoacyl-tRNA synthetase-suppressor tRNA pairs for possible use in site-specific incorporation of amino acid analogues into proteins in eukaryotes and in eubacteria. Proc Natl Acad Sci U S A 98:2268–2273. doi:10.1073/pnas.031488298

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Krzycki J (2005) The direct genetic encoding of pyrrolysine. Curr Opin Microbiol 8:706

    Article  CAS  PubMed  Google Scholar 

  • Lajoie MJ, Kosuri S, Mosberg JA et al (2013) Probing the limits of genetic recoding in essential genes. Science 342:361–363. doi:10.1126/science.1241460

    Article  CAS  PubMed  Google Scholar 

  • Lakshmipathy SK (2007) Identification of nascent chain interaction sites on trigger factor. J Biol Chem 282:12186–12193. doi:10.1074/jbc.M609871200

    Article  CAS  PubMed  Google Scholar 

  • Lee HS, Guo J, Lemke EA et al (2009) Genetic incorporation of a small, environmentally sensitive, fluorescent probe into proteins in Saccharomyces cerevisiae. J Am Chem Soc 131:12921–12923. doi:10.1021/ja904896s

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Li W-T, Mahapatra A, Longstaff DG et al (2009) Specificity of pyrrolysyl-tRNA synthetase for pyrrolysine and pyrrolysine analogs. J Mol Biol 385:1156–1164. doi:10.1016/j.jmb.2008.11.032

    Article  CAS  PubMed  Google Scholar 

  • Liu C (2010) Coupled chaperone action in folding and assembly of hexadecameric Rubisco. Nature 463:197–202. doi:10.1038/nature08651

    Article  CAS  PubMed  Google Scholar 

  • Liu CC, Schultz PG (2006) Recombinant expression of selectively sulfated proteins in Escherichia coli. Nat Biotech 24:1436–1440. doi:10.1038/nbt1254

    Article  CAS  Google Scholar 

  • Liu CC, Schultz PG (2010) Adding new chemistries to the genetic code. Annu Rev Biochem 79:413–444. doi:10.1146/annurev.biochem.052308.105824

    Article  CAS  PubMed  Google Scholar 

  • Liu W, Alfonta L, Mack AV, Schultz PG (2007a) Structural basis for the recognition of para-benzoyl-L-phenylalanine by evolved aminoacyl-tRNA synthetases. Angew Chem Int Ed Engl 46:6073–6075. doi:10.1002/anie.200701990

    Article  CAS  PubMed  Google Scholar 

  • Liu W, Brock A, Chen S et al (2007b) Genetic incorporation of unnatural amino acids into proteins in mammalian cells. Nat Methods 4:239

    Article  CAS  PubMed  Google Scholar 

  • Liu C, Cellitti S, Geierstanger B, Schultz P (2009) Efficient expression of tyrosine-sulfated proteins in E. coli using an expanded genetic code. Nat Protoc 4:1784

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lodder M, Wang B, Hecht SM (2005) The N-pentenoyl protecting group for aminoacyl-tRNAs. Methods San Diego Calif 36:245–251. doi:10.1016/j.ymeth.2005.04.002

    Article  CAS  Google Scholar 

  • Lu T, Ting AY, Mainland J et al (2001) Probing ion permeation and gating in a K+ channel with backbone mutations in the selectivity filter. Nat Neurosci 4:239–246. doi:10.1038/85080

    Article  CAS  PubMed  Google Scholar 

  • Lummis SCR, Beene D L, Harrison NJ et al (2005) A cation-pi binding interaction with a tyrosine in the binding site of the GABAC receptor. Chem Biol 12:993–997. doi:10.1016/j.chembiol.2005.06.012

    Article  CAS  PubMed  Google Scholar 

  • Lummis SCR, McGonigle I, Ashby JA, Dougherty DA (2011) Two amino acid residues contribute to a cation-p binding interaction in the binding site of an insect GABA receptor. J Neurosci Off J Soc Neurosci 31:12371–12376. doi:10.1523/JNEUROSCI.1610–11.2011

    Article  CAS  Google Scholar 

  • Ma JC, Dougherty DA (1997) The Cationminus signpi Interaction. Chem Rev 97:1303–1324

    Article  CAS  PubMed  Google Scholar 

  • Majmudar CY, Lee LW, Lancia JK et al (2009) Impact of nonnatural amino acid mutagenesis on the in vivo function and binding modes of a transcriptional activator. J Am Chem Soc 131:14240–14242. doi:10.1021/ja904378z

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mannuzzu LM, Moronne MM, Isacoff EY (1996) Direct physical measure of conformational rearrangement underlying potassium channel gating. Science 271:213–216

    Article  CAS  PubMed  Google Scholar 

  • Maquat LE (2004) Nonsense-mediated mRNA decay: splicing, translation and mRNP dynamics. Nat Rev Mol Cell Biol 5:89–99. doi:10.1038/nrm1310

    Article  CAS  PubMed  Google Scholar 

  • Matulef K, Komarov AG, Costantino CA, Valiyaveetil FI (2013) Using protein backbone mutagenesis to dissect the link between ion occupancy and C-type inactivation in K+ channels. Proc Natl Acad Sci U S A 110:17886–17891. doi:10.1073/pnas.1314356110

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Melancon C, Schultz P (2009) One plasmid selection system for the rapid evolution of aminoacyl-tRNA synthetases. Bioorg Med Chem Lett 19:3845

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mohibullah N, Hahn S (2008) Site-specific cross-linking of TBP in vivo and in vitro reveals a direct functional interaction with the SAGA subunit Spt3. Genes Dev 22:2994–3006. doi:10.1101/gad.1724408

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Muir T (2003) Semisynthesis of proteins by expressed protein ligation. Annu Rev Biochem 72:249

    Article  CAS  PubMed  Google Scholar 

  • Muir TW, Sondhi D, Cole PA (1998) Expressed protein ligation: a general method for protein engineering. Proc Natl Acad Sci U S A 95:6705–6710

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mukai T, Kobayashi T, Hino N et al (2008) Adding l-lysine derivatives to the genetic code of mammalian cells with engineered pyrrolysyl-tRNA synthetases. Biochem Biophys Res Commun 371:818–822. doi:10.1016/j.bbrc.2008.04.164

    Article  CAS  PubMed  Google Scholar 

  • Mukai T, Hayashi A, Iraha F et al (2010) Codon reassignment in the Escherichia coli genetic code. Nucleic Acids Res 38:8188–8195. doi:10.1093/nar/gkq707

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Neumann H (2012) Rewiring translation—Genetic code expansion and its applications. FEBS Lett 586:2057–2064. doi:10.1016/j.febslet.2012.02.002

    Article  CAS  PubMed  Google Scholar 

  • Neumann H, Slusarczyk AL, Chin JW (2010a) De novo generation of mutually orthogonal aminoacyl-tRNA synthetase/tRNA pairs. J Am Chem Soc 132:2142–2144. doi:10.1021/ja9068722

    Article  CAS  PubMed  Google Scholar 

  • Neumann H, Wang K, Davis L et al (2010b) Encoding multiple unnatural amino acids via evolution of a quadruplet-decoding ribosome. Nature 464:441–444. doi:10.1038/nature08817

    Article  CAS  PubMed  Google Scholar 

  • Noren C, Anthony-Cahill S, Griffith M, Schultz P (1989) A general method for site-specific incorporation of unnatural amino acids into proteins. Science 244:182

    Article  CAS  PubMed  Google Scholar 

  • Nowak MW, Gallivan JP, Silverman SK et al (1998) In vivo incorporation of unnatural amino acids into ion channels in Xenopus oocyte expression system. Methods Enzymol 293:504–529

    Article  CAS  PubMed  Google Scholar 

  • Ohno S, Yokogawa T, Fujii I et al (1998) Co-expression of yeast amber suppressor tRNATyr and tyrosyl-tRNA synthetase in Escherichia coli: possibility to expand the genetic code. J Biochem (Tokyo) 124:1065–1068

    Article  CAS  PubMed  Google Scholar 

  • Okuda S, Tokuda H (2009) Model of mouth-to-mouth transfer of bacterial lipoproteins through inner membrane LolC, periplasmic LolA, and outer membrane LolB. Proc Natl Acad Sci U S A 106:5877–5882. doi:10.1073/pnas.0900896106

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Padgett CL, Hanek AP, Lester HA et al (2007) Unnatural amino acid mutagenesis of the GABA(A) receptor binding site residues reveals a novel cation-pi interaction between GABA and beta 2Tyr97. J Neurosci Off J Soc Neurosci 27:886–892. doi:10.1523/JNEUROSCI.4791-06.2007

    Article  CAS  Google Scholar 

  • Pantoja R, Rodriguez EA, Dibas MI et al (2009) Single-molecule imaging of a fluorescent unnatural amino acid incorporated into nicotinic receptors. Biophys J 96:226–237. doi:10.1016/j.bpj.2008.09.034

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Peeler JC, Mehl RA (2012) Site-specific incorporation of unnatural amino acids as probes for protein conformational changes. Methods Mol Biol Clifton NJ 794:125–134. doi:10.1007/978-1-61779-331-88

    Article  CAS  Google Scholar 

  • Pentelute BL, Kent SBH (2007) Selective desulfurization of cysteine in the presence of Cys(Acm) in polypeptides obtained by native chemical ligation. Org Lett 9:687–690. doi:10.1021/ol0630144

    Article  CAS  PubMed  Google Scholar 

  • Peters F, Brock A, Wang J, Schultz P (2009) Chem Biol 16:148

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pless SA, Ahern CA (2013) Unnatural amino acids as probes of ligand-receptor interactions and their conformational consequences. Annu Rev Pharmacol Toxicol 53:211–229. doi:10.1146/annurev-pharmtox-011112-140343

    Article  CAS  PubMed  Google Scholar 

  • Pless SA, Millen KS, Hanek AP et al (2008) A cation-pi interaction in the binding site of the glycine receptor is mediated by a phenylalanine residue. J Neurosci Off J Soc Neurosci 28:10937–10942. doi:10.1523/JNEUROSCI.2540-08.2008

    Article  CAS  Google Scholar 

  • Pless SA, Galpin JD, Frankel A, Ahern CA (2011a) Molecular basis for class Ib anti-arrhythmic inhibition of cardiac sodium channels. Nat Commun 2:351. doi:10.1038/ncomms1351

    Article  PubMed  CAS  Google Scholar 

  • Pless SA, Galpin JD, Niciforovic AP, Ahern CA (2011b) Contributions of counter-charge in a potassium channel voltage-sensor domain. Nat Chem Biol 7:617–623. doi:10.1038/nchembio.622

    Article  CAS  PubMed  Google Scholar 

  • Pless SA, Hanek AP, Price KL et al (2011c) A cation-p interaction at a phenylalanine residue in the glycine receptor binding site is conserved for different agonists. Mol Pharmacol 79:742–748. doi:10.1124/mol.110.069583

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pless SA, Leung AWY, Galpin JD, Ahern CA (2011d) Contributions of conserved residues at the gating interface of glycine receptors. J Biol Chem 286:35129–35136. doi:10.1074/jbc.M111.269027

    Google Scholar 

  • Pless SA, Galpin JD, Niciforovic AP et al (2013) Hydrogen bonds as molecular timers for slow inactivation in voltage-gated potassium channels. eLife 2:e01289. doi:10.7554/eLife.01289

    Article  PubMed Central  PubMed  Google Scholar 

  • Pless SA, Elstone FD, Niciforovic AP et al (2014) Asymmetric functional contributions of acidic and aromatic side chains in sodium channel voltage-sensor domains. J Gen Physiol 143:645–656. doi:10.1085/jgp.201311036

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Polycarpo C, Ambrogelly A, Bérubé A et al (2004) An aminoacyl-tRNA synthetase that specifically activates pyrrolysine. Proc Natl Acad Sci U S A 101:12450–12454. doi:10.1073/pnas.0405362101

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Polycarpo C, Herring S, Berube A et al (2006) Pyrrolysine analogues as substrates for pyrrolysyl-tRNA synthetase. FEBS Lett 580:6695

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Puskar NL, Xiu X, Lester HA, Dougherty DA (2011) Two neuronal nicotinic acetylcholine receptors, alpha4beta4 and alpha7, show differential agonist binding modes. J Biol Chem 286:14618–14627. doi:10.1074/jbc.M110.206565

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rackham O, Chin JW (2005) A network of orthogonal ribosome x mRNA pairs. Nat Chem Biol 1:159–166. doi:10.1038/nchembio719

    Article  CAS  PubMed  Google Scholar 

  • Rhee H, Lee J-S, Lee J et al (2008) Photolytic control and infrared probing of amide I mode in the dipeptide backbone-caged with the 4,5-dimethoxy-2-nitrobenzyl group. J Phys Chem B 112:2128–2135. doi:10.1021/jp074776z

    Article  CAS  PubMed  Google Scholar 

  • Robertson SA, Ellman JA, Schultz PG (1991) A general and efficient route for chemical aminoacylation of transfer RNAs. J Am Chem Soc 113:2722–2729. doi:10.1021/ja00007a055

    Article  CAS  Google Scholar 

  • Rodriguez E, Lester H, Dougherty D (2006) In vivo incorporation of multiple unnatural amino acids through nonsense and frameshift suppression. Proc Natl Acad Sci U S A 103:8650

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rodriguez EA, Lester HA, Dougherty DA (2007a) Improved amber and opal suppressor tRNAs for incorporation of unnatural amino acids in vivo. Part 1: minimizing misacylation. RNA N Y N 13:1703–1714. doi:10.1261/rna.666807

    Article  CAS  Google Scholar 

  • Rodriguez EA, Lester HA, Dougherty DA (2007b) Improved amber and opal suppressor tRNAs for incorporation of unnatural amino acids in vivo. Part 2: evaluating suppression efficiency. RNA N Y N 13:1715–1722. doi:10.1261/rna.667607

    Article  CAS  Google Scholar 

  • Rothman DM, Petersson EJ, Vázquez ME et al (2005) Caged phosphoproteins. J Am Chem Soc 127:846–847. doi:10.1021/ja043875c

    Article  CAS  PubMed  Google Scholar 

  • Rydén SM, Isaksson LA (1984) A temperature-sensitive mutant of Escherichia coli that shows enhanced misreading of UAG/A and increased efficiency for some tRNA nonsense suppressors. Mol Gen Genet MGG 193:38–45

    Article  PubMed  Google Scholar 

  • Ryu Y, Schultz PG (2006) Efficient incorporation of unnatural amino acids into proteins in Escherichia coli. Nat Methods 3:263–265. doi:10.1038/nmeth864

    Article  CAS  PubMed  Google Scholar 

  • Sakamoto K, Hayashi A, Sakamoto A et al (2002) Site-specific incorporation of an unnatural amino acid into proteins in mammalian cells. Nucleic Acids Res 30:4692

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Saks M, Sampson J, Nowak M et al (1996) An engineered Tetrahymena tRNAGln for in vivo incorporation of unnatural amino acids into proteins by nonsense suppression. J Biol Chem 271:23169

    Article  CAS  PubMed  Google Scholar 

  • Santarelli VP, Eastwood AL, Dougherty DA et al (2007) Calcium block of single sodium channels: role of a pore-lining aromatic residue. Biophys J 93:2341–2349. doi:10.1529/biophysj.107.106856

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Santoro S, Wang L, Herberich B et al (2002) An efficient system for the evolution of aminoacyl-tRNA synthetase specificity. Nat Biotechnol 20:1044

    Article  CAS  PubMed  Google Scholar 

  • Santoro SW, Anderson JC, Lakshman V, Schultz PG (2003) An archaebacteria-derived glutamyl-tRNA synthetase and tRNA pair for unnatural amino acid mutagenesis of proteins in Escherichia coli. Nucleic Acids Res 31:6700–6709

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sato S, Mimasu S, Sato A et al (2011) Crystallographic study of a site-specifically cross-linked protein complex with a genetically incorporated photoreactive amino acid. Biochemistry (Mosc) 50:250–257. doi:10.1021/bi1016183

    Article  CAS  Google Scholar 

  • Schlieker C (2004) Substrate recognition by the AAA+ chaperone ClpB. Nat Struct Mol Biol 11:607–615. doi:10.1038/nsmb787

    Article  CAS  PubMed  Google Scholar 

  • Shen B, Xiang Z, Miller B et al (2011) Genetically encoding unnatural amino acids in neural stem cells and optically reporting voltage-sensitive domain changes in differentiated neurons. Stem Cells Dayt Ohio 29:1231–1240. doi:10.1002/stem.679

    Article  CAS  Google Scholar 

  • Shiota T, Mabuchi H, Tanaka-Yamano S et al (2011) In vivo protein-interaction mapping of a mitochondrial translocator protein Tom22 at work. Proc Natl Acad Sci U S A 108:15179–15183. doi:10.1073/pnas.1105921108

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sprinzl M, Vassilenko KS (2005) Compilation of tRNA sequences and sequences of tRNA genes. Nucleic Acids Res 33:D139–D140. doi:10.1093/nar/gki012

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sprinzl M, Steegborn C, Hübel F, Steinberg S (1996) Compilation of tRNA sequences and sequences of tRNA genes. Nucleic Acids Res 24:68–72

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Srinivasan G, James CM, Krzycki JA (2002) Pyrrolysine encoded by UAG in Archaea: charging of a UAG-decoding specialized tRNA. Science 296:1459–1462. doi:10.1126/science.1069588

    Article  CAS  PubMed  Google Scholar 

  • Summerer D, Chen S, Wu N et al (2006) A genetically encoded fluorescent amino acid. Proc Natl Acad Sci U S A 103:9785

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Takimoto JK, Xiang Z, Kang J-Y, Wang L (2010) Esterification of an unnatural amino acid structurally deviating from canonical amino acids promotes its uptake and incorporation into proteins in mammalian cells. Chembiochem Eur J Chem Biol 11:2268–2272. doi:10.1002/cbic.201000436

    Article  CAS  Google Scholar 

  • Tamura Y, Harada Y, Shiota T et al (2009) Tim23-Tim50 pair coordinates functions of translocators and motor proteins in mitochondrial protein import. J Cell Biol 184:129–141. doi:10.1083/jcb.200808068

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tippmann EM, Liu W, Summerer D et al (2007) A genetically encoded diazirine photocrosslinker in Escherichia coli. Chembiochem 8:2210–2214. doi:10.1002/cbic.200700460

    Article  CAS  PubMed  Google Scholar 

  • Tracy TE, Yan JJ, Chen L (2011) Acute knockdown of AMPA receptors reveals a trans-synaptic signal for presynaptic maturation. EMBO J 30:1577–1592. doi:10.1038/emboj.2011.59

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Umanah G, Huang L-Y, Schultz PG et al (2009) Incorporation of the unnatural amino acid p-benzoyl-L-phenylalanine (Bpa) into a G protein-coupled receptor in its native context. Adv Exp Med Biol 611:333–335

    Article  CAS  PubMed  Google Scholar 

  • Valiyaveetil FI, MacKinnon R, Muir TW (2002) Semisynthesis and folding of the potassium channel KcsA. J Am Chem Soc 124:9113–9120

    Article  CAS  PubMed  Google Scholar 

  • Valiyaveetil FI, Leonetti M, Muir TW, Mackinnon R (2006) Ion selectivity in a semisynthetic K + channel locked in the conductive conformation. Science 314:1004–1007. doi:10.1126/science.1133415

    Article  CAS  PubMed  Google Scholar 

  • Wan W, Huang Y, Wang Z et al (2010) A facile system for genetic incorporation of two different noncanonical amino acids into one protein in Escherichia coli. Angew Chem Int Ed Engl 49:3211–3214. doi:10.1002/anie.201000465

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Schultz P (2001) A general approach for the generation of orthogonal tRNAs. Chem Biol 8:883

    Article  CAS  PubMed  Google Scholar 

  • Wang Q, Wang L (2008) New methods enabling efficient incorporation of unnatural amino acids in yeast. J Am Chem Soc 130:6066–6067. doi:10.1021/ja800894n

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Brock A, Herberich B, Schultz P (2001) Expanding the genetic code of Escherichia coli. Science 292:498

    Article  CAS  PubMed  Google Scholar 

  • Wang K, Neumann H, Peak-Chew SY, Chin JW (2007a) Evolved orthogonal ribosomes enhance the efficiency of synthetic genetic code expansion. Nat Biotechnol 25:770–777. doi:10.1038/nbt1314

    Article  PubMed  CAS  Google Scholar 

  • Wang W, Takimoto J, Louie G et al (2007b) Genetically encoding unnatural amino acids for cellular and neuronal studies. Nat Neurosci 10:1063

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wang HH, Isaacs FJ, Carr PA et al (2009a) Programming cells by multiplex genome engineering and accelerated evolution. Nature 460:894–898. doi:10.1038/nature08187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Q, Parrish AR, Wang L (2009b) Expanding the genetic code for biological studies. Chem Biol 16:323–336. doi:10.1016/j.chembiol.2009.03.001

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wang K, Sachdeva A, Cox DJ et al (2014) Optimized orthogonal translation of unnatural amino acids enables spontaneous protein double-labelling and FRET. Nat Chem 6:393–403. doi:10.1038/nchem.1919

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wu N, Deiters A, Cropp TA et al (2004) A genetically encoded photocaged amino acid. J Am Chem Soc 126:14306–14307. doi:10.1021/ja040175z

    Article  CAS  PubMed  Google Scholar 

  • Wu B, Chien EYT, Mol CD et al (2010) Structures of the CXCR4 chemokine GPCR with small-molecule and cyclic peptide antagonists. Science 330:1066–1071. doi:10.1126/science.1194396

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Xiu X, Puskar NL, Shanata JAP et al (2009) Nicotine binding to brain receptors requires a strong cation-pi interaction. Nature 458:534–537. doi:10.1038/nature07768

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yamano K, Tanaka-Yamano S, Endo T (2010) Tom7 regulates Mdm10-mediated assembly of the mitochondrial import channel protein Tom40. J Biol Chem 285:41222–41231. doi:10.1074/jbc.M110.163238

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ye SX (2010) Tracking G-protein-coupled receptor activation using genetically encoded infrared probes. Nature 464:1386–1389. doi:10.1038/nature08948

    Article  CAS  PubMed  Google Scholar 

  • Ye SX, Huber T, Vogel R, Sakmar TP (2009) FTIR analysis of GPCR activation using azido probes. Nat Chem Biol 5:397–399. doi:10.1038/nchembio.167

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ye S, Riou M, Carvalho S, Paoletti P (2013) Expanding the genetic code in Xenopus laevis oocytes. Chembiochem Eur J Chem Biol 14:230–235. doi:10.1002/cbic.201200515

    Article  CAS  Google Scholar 

  • Young DD, Young TS, Jahnz M et al (2011) An evolved aminoacyl-tRNA synthetase with atypical polysubstrate specificity. Biochemistry (Mosc) 50:1894–1900. doi:10.1021/bi101929e

    Article  CAS  Google Scholar 

  • Zacharias N, Dougherty DA (2002) Cation-pi interactions in ligand recognition and catalysis. Trends Pharmacol Sci 23:281–287

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z, Wang L, Brock A, Schultz P (2002) The selective incorporation of alkenes into proteins in Escherichia coli. Angew Chem Int Ed Engl 41:2840

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Wang L, Schultz PG, Wilson IA (2005) Crystal structures of apo wild-type M. jannaschii tyrosyl-tRNA synthetase (TyrRS) and an engineered TyrRS specific for O-methyl-L-tyrosine. Protein Sci Publ Protein Soc 14:1340–1349. doi:10.1110/ps.041239305

    Article  CAS  Google Scholar 

  • Zhong W, Gallivan JP, Zhang Y et al (1998) From ab initio quantum mechanics to molecular neurobiology: a cation-pi binding site in the nicotinic receptor. Proc Natl Acad Sci U S A 95:12088–12093

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher A. Ahern .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Leisle, L., Valiyaveetil, F., Mehl, R., Ahern, C. (2015). Incorporation of Non-Canonical Amino Acids. In: Ahern, C., Pless, S. (eds) Novel Chemical Tools to Study Ion Channel Biology. Advances in Experimental Medicine and Biology, vol 869. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2845-3_7

Download citation

Publish with us

Policies and ethics