Skip to main content

Photomorphogenesis and Photoperiodism in Plants

  • Chapter
  • First Online:
Photobiology

Abstract

It has long been observed that light affects the way plants grow and develop. Photomorphogenesis encompasses all responses to light that affect plant form. Phototropic responses involve the reorientation of plant organs with respect to an asymmetry in the incident light Photoperiodic responses are those in which various aspects of development are modified in response to changes in the daily light/dark cycle, and involve a circadian timing mechanism. This chapter deals with the discovery and nature of the photoreceptors involved in these phenomena, their physiological roles as determined in the laboratory, and their possible significance in the natural environment. Although lower plants also show clear photomorphogenic responses, they have in general been less intensively studied, and we will restrict this discussion to higher plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abe M, Kobayashi Y, Yamamoto S, Daimon Y, Yamaguchi A, Ikeda Y, Ichinoki H, Notaguchi M, Goto K, Araki T (2005) FD, a bZIP protein mediating signals from the floral pathway integrator FT at the shoot apex. Science 309:1052–1056

    CAS  PubMed  Google Scholar 

  • Ahmad M, Cashmore AR (1994) HY4 gene of Arabidopsis thaliana encodes a protein with characteristics of a blue-light photoreceptor. Nature 366:162–166

    Google Scholar 

  • Ahmad M, Jarillo JA, Smirnova O, Cashmore AR (1998) The CRY1 blue light photoreceptor of Arabidopsis interacts with phytochrome A in vitro. Mol Cell 1:939–948

    CAS  PubMed  Google Scholar 

  • Aihara Y, Tabata R, Suzuki T, Shimazaki K, Nagatani A (2008) Molecular basis of the functional specificities of phototropin 1 and 2. Plant J 56:364–375

    CAS  PubMed  Google Scholar 

  • Alabadí D, Yanovsky MJ, Mas P, Harmer SL, Kay SA (2002) Critical role for CCA1 and LHY in maintaining circadian rhythmicity in Arabidopsis. Curr Biol 12:757–761

    PubMed  Google Scholar 

  • Andrés F, Coupland G (2012) The genetic basis of flowering responses to seasonal cues. Nat Rev Genet 13:627–639

    PubMed  Google Scholar 

  • Balasubramanian S, Sureshkumar S, Agrawal M, Michael TP, Wessinger C, Maloof JN, Clark R, Warthmann N, Chory J, Weigel D (2006) The PHYTOCHROME C photoreceptor gene mediates natural variation in flowering and growth responses of Arabidopsis thaliana. Nat Genet 38:711–715

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ballare CL, Casal JJ, Kendrick RE (1991) Responses of light-grown wild-type and long-hypocotyl mutant cucumber seedlings to natural and simulated shade light. Photochem Photobiol 54:819–826

    Google Scholar 

  • Ballare CL (1999) Keeping up with the neighbours: phytochrome sensing and other signalling mechanisms. Trends Plant Sci 4:97–102

    PubMed  Google Scholar 

  • Ballare CL, Scopel AL, Sanchez RA (1990) Far-red irradiation reflected from adjacent leaves: an early signal of competition in plant canopies. Science 247:329–332

    CAS  PubMed  Google Scholar 

  • Ballare CL, Scopel AL, Sanchez RA (1997) Foraging for light – photosensory ecology and agricultural implications. Plant Cell Environ 20:820–825

    Google Scholar 

  • Ballare CL, Scopel AL, Radosevich SR, Kendrick RE (1992) Phytochrome-mediated phototropism in de-etiolated seedlings. Occurrence and ecological significance. Plant Physiol 100:170–177

    CAS  PubMed Central  PubMed  Google Scholar 

  • Baskin TI, Iino M (1987) An action spectrum in the blue and ultraviolet for phototropism in alfalfa. Photochem Photobiol 46:127–136

    Google Scholar 

  • Baudry A, Ito S, Song YH, Strait AA, Kiba T, Lu S, Henriques R, Pruneda-Paz JL, Chua NH, Tobin EM, Kay SA, Imaizumi T (2010) F-box proteins FKF1 and LKP2 act in concert with ZEITLUPE to control Arabidopsis clock progression. Plant Cell 22:606–622

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bieza K, Lois R (2001) An Arabidopsis mutant tolerant to lethal ultraviolet-B levels shows contsitutively elevated accumulation of flavonoids and other phenolics. Plant Physiol 126:1105–1115

    CAS  PubMed Central  PubMed  Google Scholar 

  • Boccalandro HE, Giordano CV, Ploschuk EL, Piccoli PN, Bottini R, Casal JJ (2012) Phototropins but not cryptochromes mediate the blue light-specific promotion of stomatal conductance, while both enhance photosynthesis and transpiration under full sunlight. Plant Physiol 158:1475–1484

    CAS  PubMed Central  PubMed  Google Scholar 

  • Böhlenius H, Huang T, Charbonnel-Campaa L, Brunner AM, Jansson S, Strauss SH, Nilsson O (2006) CO/FT regulatory module controls timing of flowering and seasonal growth cessation in trees. Science 312:1040–1043

    PubMed  Google Scholar 

  • Brambilla V, Fornara F (2013) Molecular control of flowering in response to day length in rice. J Integr Plant Biol 55:410–418

    CAS  PubMed  Google Scholar 

  • Brautigam CA, Smith BS, Ma Z, Palnitkar M, Tomchick DR, Machius M, Deisenhofer J (2004) Structure of the photolyase-like domain of cryptochrome 1 from Arabidopsis thaliana. Proc Natl Acad Sci U S A 101:12142–12147

    CAS  PubMed Central  PubMed  Google Scholar 

  • Briggs WR (2006) Blue/UV-A photoreceptors: historical overview. In: Schäfer E, Nagy F (eds) Photomorphogenesis in plants and bacteria, 3rd edn. Springer, Dordrecht, pp 171–198

    Google Scholar 

  • Bünning E (1964) The physiological clock. Springer, Berlin

    Google Scholar 

  • Butler WL, Hendricks SB, Siegelman HW (1964) Action spectra of phytochrome in vitro. Photochem Photobiol 3:521–528

    CAS  Google Scholar 

  • Carr-Smith HD, Thomas B, Johnson CB (1989) An action spectrum for the effect of continuous light on flowering in wheat. Planta 179:428–432

    CAS  PubMed  Google Scholar 

  • Casal JJ (2006) The photoreceptor interaction network. In: Schäfer E, Nagy F (eds) Photomorphogenesis in plants and bacteria, 3rd edn. Springer, Dordrecht, pp 407–438. (2000)

    Google Scholar 

  • Casal JJ (2013) Photoreceptor signaling networks in plant responses to shade. Annu Rev Plant Biol 64:403–427

    CAS  PubMed  Google Scholar 

  • Casal JJ, Sanchez RA (1998) Phytochromes and seed germination. Seed Sci Res 8:317–329

    CAS  Google Scholar 

  • Chaves I, Pokorny R, Byrdin M, Hoang N, Ritz T, Brettel K, Essen LO, van der Horst GT, Batschauer A, Ahmad M (2011) The cryptochromes: blue light photoreceptors in plants and animals. Annu Rev Plant Biol 62:335–364

    CAS  PubMed  Google Scholar 

  • Chen F, Shi X, Chen L, Dai M, Zhou Z, Shen Y, Li J, Li G, Wei N, Deng XW (2012) Phosphorylation of FAR-RED ELONGATED HYPOCOTYL1 is a key mechanism defining signaling dynamics of phytochrome A under red and far-red light in Arabidopsis. Plant Cell 24:1907–1920

    CAS  PubMed Central  PubMed  Google Scholar 

  • Choi G, Yi H, Lee J, Kwon YK, Soh MS, Shin B, Luka Z, Hahn TR, Song PS (1999) Phytochrome signalling is mediated through nucleoside diphosphate kinase 2. Nature 401:610–613

    CAS  PubMed  Google Scholar 

  • Christie JM, Murphy AS (2013) Shoot phototropism in higher plants: new light through old concepts. Am J Bot 100:35–46

    CAS  PubMed  Google Scholar 

  • Christie JM, Salomon M, Nozue K, Wada M, Briggs WR (1999) LOV (light, oxygen, or voltage) domains of the blue-light photoreceptor phototropin (nph1): binding sites for the chromophore flavin mononucleotide. Proc Nat Acad Sci USA 96:8779–8783

    CAS  PubMed Central  PubMed  Google Scholar 

  • Christie JM, Arvai AS, Baxter KJ, Heilmann M, Pratt AJ, O’Hara A, Kelly SM, Hothorn M, Smith BO, Hitomi K, Jenkins GI, Getzoff ED (2012) Plant UVR8 photoreceptor senses UV-B by tryptophan-mediated disruption of cross-dimer salt bridges. Science 335:1492–1496

    CAS  PubMed Central  PubMed  Google Scholar 

  • Colon-Carmona A, Chen DL, Yeh KC, Abel S (2000) Aux/IAA proteins are phosphorylated by phytochrome in vitro. Plant Physiol 124:1728–1738

    CAS  PubMed Central  PubMed  Google Scholar 

  • Corbesier L, Vincent C, Jang S, Fornara F, Fan Q, Searle I, Giakountis A, Farrona S, Gissot L, Turnbull C, Coupland G (2007) FT protein movement contributes to long-distance signaling in floral induction of Arabidopsis. Science 316:1030–1033

    CAS  PubMed  Google Scholar 

  • Coulter MW, Hamner KC (1964) Photoperiodic flowering response of Biloxi soybean in 72-hour cycles. Plant Physiol 39:846–856

    Google Scholar 

  • Davis SJ (2006) The phytochrome chromophore. In: Schäfer E, Nagy F (eds) Photomorphogenesis in plants and bacteria, 3rd edn. Springer, Dordrecht, pp 41–64

    Google Scholar 

  • Davis SJ, Vener AV, Vierstra RD (1999) Bacteriophytochromes: phytochrome-like photoreceptors from nonphotosynthetic eubacteria. Science 286:2517–2520

    CAS  PubMed  Google Scholar 

  • DeBlasio SL, Mullen JL, Luesse DR, Hangarter RP (2003) Phytochrome modulation of blue light-induced chloroplast movements in Arabidopsis. Plant Physiol 133:1471–1479

    CAS  PubMed Central  PubMed  Google Scholar 

  • Debrieux D, Trevisan M, Fankhauser C (2013) Conditional involvement of constitutive photomorphogenic1 in the degradation of phytochrome A. Plant Physiol 161:2136–2145

    CAS  PubMed Central  PubMed  Google Scholar 

  • Deitzer GF, Hayes R, Jabben M (1982) Phase shift in the circadian rhythm of floral promotion by far-red light in Hordeum vulgare L. Plant Physiol 69:597–601

    CAS  PubMed Central  PubMed  Google Scholar 

  • Demarsy E, Schepens I, Okajima K, Hersch M, Bergmann S, Christie J, Shimazaki K, Tokutomi S, Fankhauser C (2012) Phytochrome kinase substrate 4 is phosphorylated by the phototropin 1 photoreceptor. EMBO J 31:3457–3467

    CAS  PubMed Central  PubMed  Google Scholar 

  • Devlin PF, Patel SR, Whitelam GC (1998) Phytochrome E influences internode elongation and flowering time in Arabidopsis. Plant Cell 10:1479–1488

    CAS  PubMed Central  PubMed  Google Scholar 

  • Devlin PF, Robson PRH, Patel SR, Goosey L, Sharrock RA, Whitelam GC (1999) Phytochrome D acts in the shade-avoidance syndrome in Arabidopsis by controlling elongation growth and flowering time. Plant Physiol 119:909–915

    CAS  PubMed Central  PubMed  Google Scholar 

  • Eichenberg K, Baurle I, Paulo N, Sharrock RA, Rudiger W, Schafer E (2000) Arabidopsis phytochromes C and E have different spectral characteristics from those of phytochromes A and B. FEBS Lett 470:107–112

    CAS  PubMed  Google Scholar 

  • Fankhauser C, Yeh KC, Lagarias JC, Zhang H, Elich TD, Chory J (1999) PKS1, a substrate phosphorylated by phytochrome that modulates light signaling in Arabidopsis. Science 284:1539–1541

    CAS  PubMed  Google Scholar 

  • Farre EM, Harmer SL, Harmon FG, Yanovsky MJ, Kay SA (2005) Overlapping and distinct roles of PRR7 and PRR9 in the Arabidopsis circadian clock. Curr Biol 15:47–54

    CAS  PubMed  Google Scholar 

  • Faure S, Turner AS, Gruszka D, Christodoulou V, Davis SJ, von Korff M, Laurie DA (2012) Mutation at the circadian clock gene EARLY MATURITY 8 adapts domesticated barley (Hordeum vulgare) to short growing seasons. Proc Natl Acad Sci U S A 109:8328–8333

    CAS  PubMed Central  PubMed  Google Scholar 

  • Favory JJ, Stec A, Gruber H, Rizzini L, Oravecz A, Funk M, Albert A, Cloix C, Jenkins GI, Oakeley EJ, Seidlitz HK, Nagy F, Ulm R (2009) Interaction of COP1 and UVR8 regulates UV-B-induced photomorphogenesis and stress acclimation in Arabidopsis. EMBO J 28:591–601

    CAS  PubMed Central  PubMed  Google Scholar 

  • Folta KM, Spalding EP (2001) Unexpected roles for cryptochrome 2 and phototropin revealed by high-resolution analysis of blue light-mediated hypocotyl growth inhibition. Plant J 26:471–478

    CAS  PubMed  Google Scholar 

  • Fowler S, Lee K, Onouchi H, Samach A, Richardson K, Morris B, Coupland G, Putterill J (1999) GIGANTEA: a circadian clock-controlled gene that regulates photoperiodic flowering in Arabidopsis and encodes a protein with several possible membrane-spanning domains. EMBO J 18:4679–4688

    CAS  PubMed Central  PubMed  Google Scholar 

  • Franklin KA, Praekelt U, Stoddart WM, Billingham OE, Halliday KJ, Whitelam GC (2003) Phytochromes B, D, and E act redundantly to control multiple physiological responses in Arabidopsis. Plant Physiol 131:1340–1346

    Google Scholar 

  • Franklin KA, Whitelam GC (2005) Phytochromes and shade-avoidance responses in plants. Ann Bot 96:169–175

    CAS  PubMed Central  PubMed  Google Scholar 

  • Galen C, Rabenold JJ, Liscum E (2007) Functional ecology of a blue light photoreceptor: effects of phototropin-1 on root growth enhance drought tolerance in Arabidopsis thaliana. New Phytol 173:91–99

    CAS  PubMed  Google Scholar 

  • Galván-Ampudia CS, Offringa R (2007) Plant evolution: AGC kinases tell the auxin tale. Trends Plant Sci 12:541–547

    PubMed  Google Scholar 

  • Garner WW, Allard AH (1920) Effect of the relative length of day and night and other factors of the environment on growth and reproduction in plants. J Agric Res 18:553–606

    Google Scholar 

  • Genoud T, Schweizer F, Tscheuschler A, Debrieux D, Casal JJ, Schäfer E, Hiltbrunner A, Fankhauser C (2008) FHY1 mediates nuclear import of the light-activated phytochrome A photoreceptor. PLoS Genet 4(8):e1000143. doi:10.1371/journal.pgen.1000143

    PubMed Central  PubMed  Google Scholar 

  • Gil P, Kircher S, Adam E, Bury E, Kozma-Bognar L, Schafer E, Nagy F (2000) Photocontrol of subcellular partitioning of phytochrome-B:GFP fusion protein in tobacco seedlings. Plant J 22:135–145

    CAS  PubMed  Google Scholar 

  • Goosey L, Palecanda L, Sharrock RA (1997) Differential patterns of expression of the arabidopsis PHYB, PHYD, and PHYE phytochrome genes. Plant Physiol 115:959–969

    CAS  PubMed Central  PubMed  Google Scholar 

  • Guo HW, Yang WY, Mockler TC, Lin CT (1998) Regulation of flowering time by Arabidopsis photoreceptors. Science 279:1360–1363

    CAS  PubMed  Google Scholar 

  • Han YJ, Kim HS, Kim YM, Shin AY, Lee SS, Bhoo SH, Song PS, Kim JI (2010) Functional characterization of phytochrome autophosphorylation in plant light signaling. Plant Cell Physiol 51: 596–609

    Google Scholar 

  • Harada A, Sakai T, Okada K (2003) Phot1 and phot2 mediate blue light-induced transient increases in cytosolic Ca2+ differently in Arabidopsis leaves. Proc Natl Acad Sci U S A 100:8583–8588

    CAS  PubMed Central  PubMed  Google Scholar 

  • Harper SM, Neil LC, Gardner KH (2003) Structural basis of a phototropin light switch. Science 301:1541–1544

    CAS  PubMed  Google Scholar 

  • Hartmann KM (1967) Ein Wirkungspectrum der Photomorphogenese unter Hochenergiebe-dingungen und seine Interpretation auf der Basis der Phytochroms (Hypokotylwachstumshemmung bei Lactuca sativa L.). Z Naturforsch 22b:1172–1175

    Google Scholar 

  • Hauser BA, Pratt LH, Cordonnier-Pratt MM (1997) Absolute quantification of five phytochrome transcripts in seedlings and mature plants of tomato (Solanum lycopersicum L.). Planta 201:379–387

    CAS  PubMed  Google Scholar 

  • Hayama R, Yokoi S, Tamaki S, Yano M, Shimamoto K (2003) Adaptation of photoperiodic control pathways produces short-day flowering in rice. Nature 422:719–722

    CAS  PubMed  Google Scholar 

  • Hazen SP, Schultz TF, Pruneda-Paz JL, Borevitz JO, Ecker JR, Kay SA (2005) LUX ARRHYTHMO encodes a Myb domain protein essential for circadian rhythms. Proc Natl Acad Sci U S A 102:10387–10392

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hecht V, Knowles CL, Vander Schoor JK, Liew LC, Jones SE, Lambert MJ, Weller JL (2007) Pea LATE BLOOMER1 is a GIGANTEA ortholog with roles in photoperiodic flowering, deetiolation, and transcriptional regulation of circadian clock gene homologs. Plant Physiol 144:648–661

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hennig L (2006) Phytochrome degradation and dark reversion. In: Schäfer E, Nagy F (eds) Photomorphogenesis in plants and bacteria, 3rd edn. Springer, Dordrecht, pp 131–154

    Google Scholar 

  • Hershey HP, Colbert JT, Lissemore JL, Barker RF, Quail PH (1984) Molecular cloning of cDNA for Avena phytochrome. Proc Natl Acad Sci U S A 81:2332–2336

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hiltbrunner A, Tscheuschler A, Viczián A, Kunkel T, Kircher S, Schäfer E (2006) FHY1 and FHL act together to mediate nuclear accumulation of the phytochrome A photoreceptor. Plant Cell Physiol 47:1023–1034

    CAS  PubMed  Google Scholar 

  • Hirose F, Shinomura T, Tanabata T, Shimada H, Takano M (2006) Involvement of rice cryptochromes in de-etiolation responses and flowering. Plant Cell Physiol 47:915–925

    CAS  PubMed  Google Scholar 

  • Hisada A, Hanzawa H, Weller JL, Nagatani A, Reid JB, Furuya M (2000) Light-induced nuclear translocation of endogenous pea phytochrome A visualized by immunocytochemical procedures. Plant Cell 12:1063–1078

    CAS  PubMed Central  PubMed  Google Scholar 

  • Howe GT, Bucciaglia PA, Hackett WP, Furnier GR, Cordonnier-Pratt MM, Gardner G (1998) Evidence that the phytochrome gene family in black cottonwood has one PHYA locus and two PHYB loci but lacks members of the PHYC/F and PHYE subfamilies. Mol Biol Evol 15:160–175

    CAS  PubMed  Google Scholar 

  • Huala E, Oeller PW, Liscum E, Han IS, Larsen E, Briggs WR (1997) Arabidopsis NPH1 – a protein kinase with a putative redox-sensing domain. Science 278:2120–2123

    CAS  PubMed  Google Scholar 

  • Hughes J (2013) Phytochrome cytoplasmic signaling. Annu Rev Plant Biol 64:377–402

    CAS  PubMed  Google Scholar 

  • Imaizumi T, Schultz TF, Harmon FG, Ho LA, Kay SA (2005) FKF1 F-box protein mediates cyclic degradation of a repressor of CONSTANS in Arabidopsis. Science 309:293–297

    CAS  PubMed  Google Scholar 

  • Inoue S, Kinoshita T, Matsumoto M, Nakayama KI, Doi M, Shimazaki K (2008a) Blue light-induced autophosphorylation of phototropin is a primary step for signalling. Proc Natl Acad Sci U S A 105:5626–5631

    CAS  PubMed Central  PubMed  Google Scholar 

  • Inoue S, Kinoshita T, Takemiya A, Doi M, Shimazaki K (2008b) Leaf positioning of Arabidopsis in response to blue light. Mol Plant 1:15–26

    CAS  PubMed  Google Scholar 

  • Inoue S, Matsushita T, Tomokiyo Y, Matsumoto M, Nakayama KI, Kinoshita T, Shimazaki K (2011) Functional analyses of the activation loop of phototropin2 in Arabidopsis. Plant Physiol 156:117–128

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ishikawa R, Aoki M, Kurotani K, Yokoi S, Shinomura T, Takano M, Shimamoto K (2011) Phytochrome B regulates heading date 1 (Hd1)-mediated expression of rice florigen Hd3a and critical day length in rice. Mol Genet Genomics 285:461–470

    CAS  PubMed  Google Scholar 

  • Ito S, Song YH, Josephson-Day AR, Miller RJ, Breton G, Olmstead RG, Imaizumi T (2012) FLOWERING BHLH transcriptional activators control expression of the photoperiodic flowering regulator CONSTANS in Arabidopsis. Proc Natl Acad Sci U S A 109:3582–3587

    CAS  PubMed Central  PubMed  Google Scholar 

  • Itoh H, Izawa T (2013) The coincidence of critical day length recognition for florigen gene expression and floral transition under long-day conditions in rice. Mol Plant 6:635–649

    CAS  PubMed  Google Scholar 

  • Itoh H, Nonoue Y, Yano M, Izawa T (2010) A pair of floral regulators sets critical day length for Hd3a florigen expression in rice. Nat Genet 42:635–638

    CAS  PubMed  Google Scholar 

  • Jaeger KE, Wigge PA (2007) FT protein acts as a long-range signal in Arabidopsis. Curr Biol 17:1050–1054

    CAS  PubMed  Google Scholar 

  • Kagawa T, Sakai T, Suetsugu N, Oikawa K, Ishiguro S, Kato T, Tabata S, Okada K, Wada M (2001) Arabidopsis NPL1: a phototropin homolog controlling the chloroplast high-light avoidance response. Science 291:2138–2141

    CAS  PubMed  Google Scholar 

  • Kaiserli E, Jenkins GI (2007) UV-B promotes rapid nuclear translocation of the Arabidopsis UV-B specific signaling component UVR8 and activates its function in the nucleus. Plant Cell 19:2662–2673

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kanegae H, Tahir M, Savazzini F, Yamamoto K, Yano M, Sasaki T, Kanegae T, Wada M, Takano M (2000) Rice NPH1 homologues, OsNPN1a and OsNPN1b, are differently photoregulated. Plant Cell Physiol 41:415–423

    CAS  PubMed  Google Scholar 

  • Karniol B, Wagner JR, Walker JM, Vierstra RD (2005) Phylogenetic analysis of the phytochrome superfamily reveals distinct microbial subfamilies of photoreceptors. Biochem J 392:103–116

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kehoe DM, Grossman AR (1996) Similarity of a chromatic adaptation sensor to phytochrome and ethylene receptors. Science 273:1409–1412

    CAS  PubMed  Google Scholar 

  • Keller MM, Jaillais Y, Pedmale UV, Moreno JE, Chory J, Ballaré CL (2011) Cryptochrome 1 and phytochrome B control shade-avoidance responses in Arabidopsis via partially independent hormonal cascades. Plant J 67:195–207

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kerckhoffs LHJ, Schreuder MEL, van Tuinen A, Koornneef M, Kendrick RE (1997) Phytochrome control of anthocyanin biosynthesis in tomato seedlings – analysis using photomorphogenic mutants. Photochem Photobiol 65:374–381

    CAS  Google Scholar 

  • Kim BC, Tennessen DJ, Last RL (1998) UV-B-induced photomorphogenesis in Arabidopsis thaliana. Plant J 15:667–674

    CAS  PubMed  Google Scholar 

  • Kinoshita T, Doi M, Suetsugu N, Kagawa T, Wada M, Shimazaki K (2001) phot1 and phot2 mediate blue light regulation of stomatal opening. Nature 414:656–660

    CAS  PubMed  Google Scholar 

  • Kircher S, Gil P, Kozma-Bognar L, Fejes E, Speth V, Husselstein-Muller T, Bauer D, Adam E, Schafer E, Nagy F (2002) Nucleocytoplasmic partitioning of the plant photoreceptors phytochrome A, B, C, D, and E is regulated differentially by light and exhibits a diurnal rhythm. Plant Cell 14:1541–1555

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kircher S, Terecskei K, Wolf I, Sipos M, Adam E (2011) Phytochrome A-specific signaling in Arabidopsis thaliana. Plant Signal Behav 6:1714–1719

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kircher S, Kozma-Bognar L, Kim L, Adam E, Harter K, Schafer E, Nagy F (1999) Light quality-dependent nuclear import of the plant photoreceptors phytochrome A and B. Plant Cell 11:1445–1456

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kleiner O, Kircher S, Harter K, Batschauer A (1999) Nuclear localization of the Arabidopsis blue light receptor cryptochrome 2. Plant J 19:289–296

    CAS  PubMed  Google Scholar 

  • Kliebenstein DJ, Lim JE, Landry LG, Last RL (2002) Arabidopsis UVR8 regulates ultraviolet-B signal transduction and tolerance and contains sequence similarity to human regulator of chromatin condensation 1. Plant Physiol 130:234–243

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kloosterman B, Abelenda JA, Gomez Mdel M, Oortwijn M, de Boer JM, Kowitwanich K, Horvath BM, van Eck HJ, Smaczniak C, Prat S, Visser RG, Bachem CW (2013) Naturally occurring allele diversity allows potato cultivation in northern latitudes. Nature 495:246–250

    CAS  PubMed  Google Scholar 

  • Kohchi T, Mukougawa K, Frankenberg N, Masuda M, Yokota A, Lagarias JC (2001) The Arabidopsis HY2 gene encodes phytochromobilin synthase, a ferredoxin-dependent biliverdin reductase. Plant Cell 13:425–436

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kolmos E, Herrero E, Bujdoso N, Millar AJ, Tóth R, Gyula P, Nagy F, Davis SJ (2011) A reduced-function allele reveals that EARLY FLOWERING3 repressive action on the circadian clock is modulated by phytochrome signals in Arabidopsis. Plant Cell 23:3230–3246

    CAS  PubMed Central  PubMed  Google Scholar 

  • Komiya R, Yokoi S, Shimamoto K (2009) A gene network for long-day flowering activates RFT1 encoding a mobile flowering signal in rice. Development 136:3443–3450

    CAS  PubMed  Google Scholar 

  • Kong SG, Suzuki T, Tamura K, Mochizuki N, Hara-Nishimura I, Nagatani A (2006) Blue light-induced association of phototropin 2 with the Golgi apparatus. Plant J 45:994–1005

    CAS  PubMed  Google Scholar 

  • Kumimoto RW, Zhang Y, Siefers N, Holt BF 3rd (2010) NF-YC3, NF-YC4 and NF-YC9 are required for CONSTANS-mediated, photoperiod-dependent flowering in Arabidopsis thaliana. Plant J 63:379–391

    CAS  PubMed  Google Scholar 

  • Lariguet P, Fankhauser C (2004) Hypocotyl growth orientation in blue light is determined by phytochrome A inhibition of gravitropism and phototropin promotion of phototropism. Plant J 40:826–834

    CAS  PubMed  Google Scholar 

  • Lau OS, Deng XW (2012) The photomorphogenic repressors COP1 and DET1: 20 years later. Trends Plant Sci 17:584–593

    CAS  PubMed  Google Scholar 

  • Leivar P, Quail PH (2011) PIFs: pivotal components in a cellular signaling hub. Trends Plant Sci 16:19–28

    CAS  PubMed Central  PubMed  Google Scholar 

  • Li G, Siddiqui H, Teng Y, Lin R, Wan XY, Li J, Lau OS, Ouyang X, Dai M, Wan J, Devlin PF, Deng XW, Wang H (2011) Coordinated transcriptional regulation underlying the circadian clock in Arabidopsis. Nat Cell Biol 13:616–622

    CAS  PubMed  Google Scholar 

  • Liew LC, Hecht V, Laurie RE, Knowles CL, Vander Schoor JK, Macknight RC, Weller JL (2009) DIE NEUTRALIS and LATE BLOOMER 1 contribute to regulation of the pea circadian clock. Plant Cell 10:3198–3211

    Google Scholar 

  • Lin C, Robertson DE, Ahmad M, Raibekas AA, Jorns MS, Dutton PL, Cashmore AR (1995) Association of flavin adenine dinucleotide with the Arabidopsis blue light receptor cry1. Science 269:968–970

    CAS  PubMed  Google Scholar 

  • Lin C, Yang HY, Guo HW, Mockler T, Chen J, Cashmore AR (1998) Enhancement of blue-light sensitivity of Arabidopsis seedlings by a blue light receptor cryptochrome 2. Proc Natl Acad Sci U S A 95:2686–2690

    CAS  PubMed Central  PubMed  Google Scholar 

  • Liscum E, Briggs WR (1995) Mutations in the nph1 locus of Arabidopsis disrupt the perception of phototropic stimuli. Plant Cell 7:473–485

    CAS  PubMed Central  PubMed  Google Scholar 

  • Liscum E, Stowe-Evans EL (2000) Phototropism: “A simple” physiological response modulated by multiple interacting photosensory-response pathways. Photochem Photobiol 72:273–282

    CAS  PubMed  Google Scholar 

  • Liu XL, Covington MF, Fankhauser C, Chory J, Wagner DR (2001) ELF3 encodes a circadian clock-regulated nuclear protein that functions in an Arabidopsis PHYB signal transduction pathway. Plant Cell 13:1293–1304

    CAS  PubMed Central  PubMed  Google Scholar 

  • Liu B, Kanazawa A, Matsumura H, Takahashi R, Harada K, Abe J (2008) Genetic redundancy in soybean photoresponses associated with duplication of the phytochrome A gene. Genetics 180:995–1007

    CAS  PubMed Central  PubMed  Google Scholar 

  • Liu H, Liu B, Zhao C, Pepper M, Lin C (2011) The action mechanisms of plant cryptochromes. Trends Plant Sci 16:684–691

    CAS  PubMed Central  PubMed  Google Scholar 

  • Luesse DR, DeBlasio SL, Hangarter RP (2010) Integration of Phot1, Phot2, and PhyB signalling in light-induced chloroplast movements. J Exp Bot 61:4387–4397

    CAS  PubMed Central  PubMed  Google Scholar 

  • Malhotra K, Kim ST, Batschauer A, Dawut L, Sancar A (1995) Putative blue-light photoreceptors from Arabidopsis thaliana and Sinapis alba with a high degree of sequence homology to DNA photolyase contain the two photolyase cofactors but lack DNA repair activity. Biochem 34:6892–6899

    CAS  Google Scholar 

  • Mao J, Zhang YC, Sang Y, Li QH, Yang HQ (2005) A role for Arabidopsis cryptochromes and COP1 in the regulation of stomatal opening. Proc Natl Acad Sci U S A 102:12270–12275

    CAS  PubMed Central  PubMed  Google Scholar 

  • Martinez-Garcia JF, Huq E, Quail PH (2000) Direct targeting of light signals to a promoter element-bound transcription factor. Science 288:859–863

    CAS  PubMed  Google Scholar 

  • Mas P, Kim WY, Somers DE, Kay SA (2003) Targeted degradation of TOC1 by ZTL modulates circadian function in Arabidopsis thaliana. Nature 426:567–570

    CAS  PubMed  Google Scholar 

  • Mathews S (2006) Phytochrome-mediated development in land plants: red light sensing evolves to meet the challenges of changing light environments. Mol Ecol 15:3483–3503

    CAS  PubMed  Google Scholar 

  • Mathews S (2010) Evolutionary studies illuminate the structural-functional model of plant phytochromes. Plant Cell 22:4–16

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mathieu J, Warthmann N, Küttner F, Schmid M (2007) Export of FT protein from phloem companion cells is sufficient for floral induction in Arabidopsis. Curr Biol 17:1055–1060

    CAS  PubMed  Google Scholar 

  • Matsubara K, Ogiso-Tanaka E, Hori K, Ebana K, Ando T, Yano M (2012) Natural variation in Hd17, a homolog of Arabidopsis ELF3 that is involved in rice photoperiodic flowering. Plant Cell Physiol 53:709–716

    CAS  PubMed  Google Scholar 

  • Matsumoto N, Hirano T, Iwasaki T, Yamamoto N (2003) Functional analysis and intracellular localization of rice cryptochromes. Plant Physiol 133:1494–1503

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mazzella MA, Magliano TMA, Casal JJ (1997) Dual effect of phytochrome A on hypocotyl growth under continuous red light. Plant Cell Environ 20:261–267

    CAS  Google Scholar 

  • McWatters HG, Bastow RM, Hall A, Millar AJ (2000) The ELF3 zeitnehmer regulates light signalling to the circadian clock. Nature 408:716–720

    CAS  PubMed  Google Scholar 

  • Medzihradszky M, Bindics J, Ádám É, Viczián A, Klement É, Lorrain S, Gyula P, Mérai Z, Fankhauser C, Medzihradszky KF, Kunkel T, Schäfer E, Nagy F (2013) Phosphorylation of phytochrome B inhibits light-induced signaling via accelerated dark reversion in Arabidopsis. Plant Cell 25:535–544

    CAS  PubMed Central  PubMed  Google Scholar 

  • Michael TP, Salome PA, Yu HJ, Spencer TR, Sharp EL, McPeek MA, Alonso JM, Ecker JR, McClung CR (2003) Enhanced fitness conferred by naturally occurring variation in the circadian clock. Science 302:1049–1053

    CAS  PubMed  Google Scholar 

  • Mizoguchi T, Wheatley K, Hanzawa Y, Wright L, Mizoguchi M, Song HR, Carre IA, Coupland G (2002) LHY and CCA1 are partially redundant genes required to maintain circadian rhythms in Arabidopsis. Dev Cell 2:629–641

    CAS  PubMed  Google Scholar 

  • Mockler T, Yang H, Yu X, Parikh D, Cheng YC, Dolan S, Lin C (2003) Regulation of photoperiodic flowering by Arabidopsis photoreceptors. Proc Natl Acad Sci U S A 100:2140–2145

    CAS  PubMed Central  PubMed  Google Scholar 

  • Morris K, Thornber S, Codrai L, Richardson C, Craig A, Sadanandom A, Thomas B, Jackson S (2010) DAY NEUTRAL FLOWERING represses CONSTANS to prevent Arabidopsis flowering early in short days. Plant Cell 22:1118–1128

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mullineaux P, Karpinski S (2002) Signal transduction in response to excess light: getting out of the chloroplast. Curr Opin Plant Biol 5:43–48

    CAS  PubMed  Google Scholar 

  • Muramoto T, Kohchi T, Yokota A, Hwang IH, Goodman HM (1999) The Arabidopsis photomorphogenic mutant hy1 is deficient in phytochrome chromophore biosynthesis as a result of a mutation in a plastid heme oxygenase. Plant Cell 11:335–347

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nagel DH, Kay SA (2012) Complexity in the wiring and regulation of plant circadian networks. Curr Biol 22:R648–R657

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nakamichi N, Kita M, Ito S, Yamashino T, Mizuno T (2005) PSEUDO-RESPONSE REGULATORS, PRR9, PRR7 and PRR5, together play essential roles close to the circadian clock of Arabidopsis thaliana. Plant Cell Physiol 46:686–698

    CAS  PubMed  Google Scholar 

  • Nelson DC, Lasswell J, Rogg LE, Cohen MA, Bartel B (2000) FKF1, a clock-controlled gene that regulates the transition to flowering in Arabidopsis. Cell 101:331–340

    CAS  PubMed  Google Scholar 

  • Nito K, Wong CC, Yates JR 3rd, Chory J (2013) Tyrosine phosphorylation regulates the activity of phytochrome photoreceptors. Cell Rep 3:1970–1979

    CAS  PubMed Central  PubMed  Google Scholar 

  • O’Hara A, Jenkins GI (2012) In vivo function of tryptophans in the Arabidopsis UV-B photoreceptor UVR8. Plant Cell 24:3755–3766

    PubMed Central  PubMed  Google Scholar 

  • Park DH, Somers DE, Kim YS, Choy YH, Lim HK, Soh MS, Kim HJ, Kay SA, Nam HG (1999) Control of circadian rhythms and photoperiodic flowering by the Arabidopsis GIGANTEA gene. Science 285:1579–1582

    CAS  PubMed  Google Scholar 

  • Parker MW, Hendricks SB, Borthwick HA, Went FW (1949) Spectral sensitivities for stem and leaf growth of etiolated pea seedlings and their similarity to action spectra for photoperiodism. Am J Bot 36:194–204

    Google Scholar 

  • Parks BM, Spalding EP (1999) Sequential and coordinated action of phytochromes A and B during Arabidopsis stem growth revealed by kinetic analysis. Proc Natl Acad Sci U S A 96:14142–14146

    CAS  PubMed Central  PubMed  Google Scholar 

  • Parks BM, Quail PH (1991) Phytochrome-deficient hy1 and hy2 long hypocotyl mutants of Arabidopsis are defective in phytochrome chromophore biosynthesis. Plant Cell 3:1177–1186

    CAS  PubMed Central  PubMed  Google Scholar 

  • Parks BM, Quail PH, Hangarter RP (1996) Phytochrome A regulates red-light induction of phototropic enhancement in Arabidopsis. Plant Physiol 110:155–162

    CAS  PubMed Central  PubMed  Google Scholar 

  • Perrotta G, Ninu L, Flamma F, Weller JL, Kendrick RE, Nebuloso E, Giuliano G (2000) Tomato contains homologues of Arabidopsis cryptochromes 1 and 2. Plant Mol Biol 42:765–773

    CAS  PubMed  Google Scholar 

  • Pfeiffer A, Nagel MK, Popp C, Wüst F, Bindics J, Viczián A, Hiltbrunner A, Nagy F, Kunkel T, Schäfer E (2012) Interaction with plant transcription factors can mediate nuclear import of phytochrome B. Proc Natl Acad Sci U S A 109:5892–5897

    CAS  PubMed Central  PubMed  Google Scholar 

  • Platten JD, Foo E, Elliott RC, Hecht V, Reid JB, Weller JL (2005a) Cryptochrome 1 contributes to blue-light sensing in pea. Plant Physiol 139:1472–1482

    CAS  PubMed Central  PubMed  Google Scholar 

  • Platten JD, Foo E, Foucher F, Hecht V, Reid JB, Weller JL (2005b) The cryptochrome gene family in pea includes two differentially expressed CRY2 genes. Plant Mol Biol 59:683–696

    CAS  PubMed  Google Scholar 

  • Poppe C, Sweere U, Drumm-Herrel H, Schäfer E (1998) The blue light receptor cryptochrome 1 can act independently of phytochrome A and B in Arabidopsis thaliana. Plant J 16:465–471

    CAS  PubMed  Google Scholar 

  • Quail PH (2006) Phytochrome signal transduction network. In: Schäfer E, Nagy F (eds) Photomorphogenesis in plants and bacteria, 3rd edn. Springer, Dordrecht, pp 335–356

    Google Scholar 

  • Rausenberger J, Tscheuschler A, Nordmeier W, Wüst F, Timmer J, Schäfer E, Fleck C, Hiltbrunner A (2011) Photoconversion and nuclear trafficking cycles determine phytochrome A’s response profile to far-red light. Cell 146:813–825

    CAS  PubMed  Google Scholar 

  • Rizzini L, Favory JJ, Cloix C, Faggionato D, O’Hara A, Kaiserli E, Baumeister R, Schäfer E, Nagy F, Jenkins GI, Ulm R (2011) Perception of UV-B by the Arabidopsis UVR8 protein. Science 332:103–106

    CAS  PubMed  Google Scholar 

  • Rockwell NC, Lagarias JC (2010) A brief history of phytochromes. ChemPhysChem 11:1172–1180

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rockwell NC, Su YS, Lagarias JC (2006) Phytochrome structure and signaling mechanisms. Annu Rev Plant Biol 57:837–858

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rösler J, Klein I, Zeidler M (2007) Arabidopsis fhl/fhy1 double mutant reveals a distinct cytoplasmic action of phytochrome A. Proc Natl Acad Sci U S A 104:10737–10742

    PubMed Central  PubMed  Google Scholar 

  • Ryan KG, Swinny EE, Winefield C, Markham KR (2001) Flavonoids and UV photoprotection in Arabidopsis mutants. Z Naturforsch 56:745–754

    CAS  Google Scholar 

  • Sage LC (1992) Pigment of the imagination: a history of phytochrome research. Academic, New York

    Google Scholar 

  • Saito H, Ogiso-Tanaka E, Okumoto Y, Yoshitake Y, Izumi H, Yokoo T, Matsubara K, Hori K, Yano M, Inoue H, Tanisaka T (2012) Ef7 encodes an ELF3-like protein and promotes rice flowering by negatively regulating the floral repressor gene Ghd 7 under both short- and long-day conditions. Plant Cell Physiol 53:717–728

    CAS  PubMed  Google Scholar 

  • Sakai T, Wada T, Ishiguro S, Okada K (2000) RPT2: a signal transducer of the phototropic response in Arabidopsis. Plant Cell 12:225–236

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sakai T, Kagawa T, Kasahara M, Swartz TE, Christie JM, Briggs WR, Wada M, Okada K (2001) Arabidopsis nph1 and npl1: blue light receptors that mediate both phototropism and chloroplast relocation. Proc Natl Acad Sci U S A 98:6969–6974

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sakamoto K, Briggs WR (2002) Cellular and subcellular localization of phototropin 1. Plant Cell 14:1723–1735

    CAS  PubMed Central  PubMed  Google Scholar 

  • Salomon M, Christie JM, Knieb E, Lempert U, Briggs WR (2000) Photochemical and mutational analysis of the FMN-binding domains of the plant blue light receptor phototropin. Biochemistry 39:9401–9410

    CAS  PubMed  Google Scholar 

  • Samach A, Onouchi H, Gold SE, Ditta GS, Schwarz-Sommer Z, Yanofsky MF, Coupland G (2000) Distinct roles of CONSTANS target genes in reproductive development of Arabidopsis. Science 288:1613–1616

    CAS  PubMed  Google Scholar 

  • Schultz TF, Kiyosue T, Yanovsky M, Wada M, Kay SA (2001) A role for LKP2 in the circadian clock of Arabidopsis. Plant Cell 13:2659–2670

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shalitin D, Yu X, Maymon M, Mockler T, Lin C (2003) Blue light-dependent in vivo and in vitro phosphorylation of Arabidopsis cryptochrome 1. Plant Cell 15:2421–2429

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sharrock RA, Mathews S (2006) Phytochrome genes in higher plants. In: Schäfer E, Nagy F (eds) Photomorphogenesis in plants and bacteria, 3rd edn. Springer, Dordrecht, pp 99–130

    Google Scholar 

  • Shinomura T, Nagatani A, Hanzawa H, Kubota M, Watanabe M, Furuya M (1996) Action spectra for phytochrome A- and B-specific photoinduction of seed germination in Arabidopsis thaliana. Proc Natl Acad Sci U S A 93:8129–8133

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shinomura T, Uchida K, Furuya M (2000) Elementary processes of photoperception by phytochrome A for high-irradiance response of hypocotyl elongation in Arabidopsis. Plant Physiol 122:147–156

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shirley BW (1996) Flavonoid biosynthesis – new functions for an old pathway. Trends Plant Sci 1:377–382

    Google Scholar 

  • Smith H, Xu Y, Quail PH (1997) Antagonistic but complementary actions of phytochromes A and B allow seedling de-etiolation. Plant Physiol 114:637–641

    CAS  PubMed Central  PubMed  Google Scholar 

  • Somers DE, Devlin PF, Kay SA (1998) Phytochromes and cryptochromes in the entrainment of the Arabidopsis circadian clock. Science 282:1488–1490

    CAS  PubMed  Google Scholar 

  • Somers DE, Schultz TF, Milnamow M, Kay SA (2000) ZEITLUPE encodes a novel clock-associated PAS protein from Arabidopsis. Cell 101:319–329

    CAS  PubMed  Google Scholar 

  • Song YH, Lee I, Lee SY, Imaizumi T, Hong JC (2012a) CONSTANS and ASYMMETRIC LEAVES 1 complex is involved in the induction of FLOWERING LOCUS T in photoperiodic flowering in Arabidopsis. Plant J 69:332–342

    CAS  PubMed Central  PubMed  Google Scholar 

  • Song YH, Smith RW, To BJ, Millar AJ, Imaizumi T (2012b) FKF1 conveys timing information for CONSTANS stabilization in photoperiodic flowering. Science 336:1045–1049

    CAS  PubMed Central  PubMed  Google Scholar 

  • Spalding EP (2000) Ion channels and the transduction of light signals. Plant Cell Environ 23:665–674

    CAS  PubMed  Google Scholar 

  • Sullivan S, Kaiserli E, Tseng TS, Christie JM (2010) Subcellular localization and turnover of Arabidopsis phototropin 1. Plant Signal Behav 5:184–186

    CAS  PubMed Central  PubMed  Google Scholar 

  • Takano M, Inagaki N, Xie X, Yuzurihara N, Hihara F, Ishizuka T, Yano M, Nishimura M, Miyao A, Hirochika H, Shinomura T (2005) Distinct and cooperative functions of phytochromes A, B, and C in the control of deetiolation and flowering in rice. Plant Cell 17:3311–3325

    CAS  PubMed Central  PubMed  Google Scholar 

  • Takemiya A, Sugiyama N, Fujimoto H, Tsutsumi T, Yamauchi S, Hiyama A, Tada Y, Christie JM, Shimazaki K (2013) Phosphorylation of BLUS1 kinase by phototropins is a primary step in stomatal opening. Nat Commun 4:2094. doi:10.1038/ncomms3094

    PubMed  Google Scholar 

  • Tamaki S, Matsuo S, Wong HL, Yokoi S, Shimamoto K (2007) Hd3a protein is a mobile flowering signal in rice. Science 316:1033–1036

    CAS  PubMed  Google Scholar 

  • Taoka K, Ohki I, Tsuji H, Furuita K, Hayashi K, Yanase T, Yamaguchi M, Nakashima C, Purwestri YA, Tamaki S, Ogaki Y, Shimada C, Nakagawa A, Kojima C, Shimamoto K (2011) 14-3-3 proteins act as intracellular receptors for rice Hd3a florigen. Nature 476:332–335

    CAS  PubMed  Google Scholar 

  • Tepperman JM, Hudson ME, Khanna R, Zhu T, Chang SH, Wang X, Quail PH (2004) Expression profiling of phyB mutant demonstrates substantial contribution of other phytochromes to red-light-regulated gene expression during seedling de-etiolation. Plant J 38:725–739

    CAS  PubMed  Google Scholar 

  • Tepperman JM, Zhu T, Chang HS, Wang X, Quail PH (2001) Multiple transcription-factor genes are early targets of phytochrome A signaling. Proc Natl Acad Sci U S A 98:9437–9442

    CAS  PubMed Central  PubMed  Google Scholar 

  • Terashima I, Hikosaka K (1995) Comparative ecophysiology of leaf and canopy photosynthesis. Plant Cell Environ 18:1111–1128

    Google Scholar 

  • Thomas B, Vince-Prue D (1997) Photoperiodism in plants, 2nd edn. Academic, London

    Google Scholar 

  • Tiwari SB, Shen Y, Chang HC, Hou Y, Harris A, Ma SF, McPartland M, Hymus GJ, Adam L, Marion C, Belachew A, Repetti PP, Reuber TL, Ratcliffe OJ (2010) The flowering time regulator CONSTANS is recruited to the FLOWERING LOCUS T promoter via a unique cis-element. New Phytol 187:57–66

    CAS  PubMed  Google Scholar 

  • Toth R, Kevei E, Hall A, Millar AJ, Nagy F, Kozma-Bognar L (2001) Circadian clock-regulated expression of phytochrome and cryptochrome genes in Arabidopsis. Plant Physiol 127:1607–1616

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tsuji H, Taoka K, Shimamoto K (2011) Regulation of flowering in rice: two florigen genes, a complex gene network, and natural variation. Curr Opin Plant Biol 14:45–52

    CAS  PubMed  Google Scholar 

  • Turner A, Beales J, Faure S, Dunford RP, Laurie DA (2005) The pseudo-response regulator Ppd-H1 provides adaptation to photoperiod in barley. Science 310:1031–1034

    CAS  PubMed  Google Scholar 

  • Ulijasz AT, Vierstra RD (2011) Phytochrome structure and photochemistry: recent advances toward a complete molecular picture. Curr Opin Plant Biol 14:498–506

    CAS  PubMed  Google Scholar 

  • Ulm R (2006) UV-B perception and signalling in higher plants. In: Schäfer E, Nagy F (eds) Photomorphogenesis in plants and bacteria, 3rd edn. Springer, Dordrecht, pp 279–304

    Google Scholar 

  • Valverde F, Mouradov A, Soppe W, Ravenscroft D, Samach A, Coupland G (2004) Photoreceptor regulation of CONSTANS protein in photoperiodic flowering. Science 303:1003–1006

    CAS  PubMed  Google Scholar 

  • Vogelmann TC, Nishio JN, Smith WK (1996) Leaves and light capture – light propagation and gradients of carbon fixation within leaves. Trends Plant Sci 1:65–70

    Google Scholar 

  • Wan YL, Eisinger W, Ehrhardt D, Kubitscheck U, Baluska F, Briggs W (2008) The subcellular localization and blue-light-induced movement of phototropin 1-GFP in etiolated seedlings of Arabidopsis thaliana. Mol Plant 1:103–117

    CAS  PubMed  Google Scholar 

  • Wang HY, Ma LG, Li JM, Zhao HY, Deng XW (2001) Direct interaction of Arabidopsis cryptochromes with COP1 in light control development. Science 294:154–158

    CAS  PubMed  Google Scholar 

  • Watanabe S, Xia Z, Hideshima R, Tsubokura Y, Sato S, Yamanaka N, Takahashi R, Anai T, Tabata S, Kitamura K, Harada K (2011) A map-based cloning strategy employing a residual heterozygous line reveals that the GIGANTEA gene is involved in soybean maturity and flowering. Genetics 188:395–407

    CAS  PubMed Central  PubMed  Google Scholar 

  • Weidler G, Zur Oven-Krockhaus S, Heunemann M, Orth C, Schleifenbaum F, Harter K, Hoecker U, Batschauer A (2012) Degradation of Arabidopsis CRY2 is regulated by SPA proteins and phytochrome A. Plant Cell 24:2610–2623

    CAS  PubMed Central  PubMed  Google Scholar 

  • Weller JL, Beauchamp N, Kerckhoffs LHJ, Platten JD, Reid JB (2001a) Interaction of phytochromes A and B in the control of de-etiolation and flowering in pea. Plant J 26:283–294

    CAS  PubMed  Google Scholar 

  • Weller JL, Liew LC, Hecht VF, Rajandran V, Laurie RE, Ridge S, Wenden B, Vander Schoor JK, Jaminon O, Blassiau C, Dalmais M, Rameau C, Bendahmane A, Macknight RC, Lejeune-Hénaut I (2012) A conserved molecular basis for photoperiod adaptation in two temperate legumes. Proc Natl Acad Sci U S A 109:21158–21163

    CAS  PubMed Central  PubMed  Google Scholar 

  • Weller JL, Murfet IC, Reid JB (1997a) Pea mutants with reduced sensitivity to far-red light define an important role for phytochrome a in day-length detection. Plant Physiol 114:1225–1236

    CAS  PubMed Central  PubMed  Google Scholar 

  • Weller JL, Perrotta G, Schreuder MEL, van Tuinen A, Koornneef M, Giuliano G, Kendrick RE (2001b) Genetic dissection of blue-light sensing in tomato using mutants deficient in cryptochrome 1 and phytochromes A, B1 and B2. Plant J 25:427–440

    CAS  PubMed  Google Scholar 

  • Weller JL, Terry MJ, Reid JB, Kendrick RE (1997b) The phytochrome-deficient pcd2 mutant of pea is unable to convert biliverdin IXα to 3(Z)-phytochromobilin. Plant J 11:1177–1186

    CAS  Google Scholar 

  • Went FW (1941) Effects of light on stem and leaf growth. Am J Bot 28:83–95

    CAS  Google Scholar 

  • Whitelam GC, Johnson E, Peng J, Carol P, Anderson ML, Cowl JS, Harberd NP (1993) Phytochrome A null mutants of Arabidopsis display a wild-type phenotype in white light. Plant Cell 5:757–768

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wigge PA, Kim MC, Jaeger KE, Busch W, Schmid M, Lohmann JU, Weigel D (2005) Integration of spatial and temporal information during floral induction in Arabidopsis. Science 309:1056–1059

    CAS  PubMed  Google Scholar 

  • Withrow RB, Klein WH, Elstad V (1957) Action spectra of photomorphogenic induction and its inactivation. Plant Physiol 32:453–462

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yang SW, Jang IC, Henriques R, Chua NH (2009) FAR-RED ELONGATED HYPOCOTYL1 and FHY1-LIKE associate with the Arabidopsis transcription factors LAF1 and HFR1 to transmit phytochrome A signals for inhibition of hypocotyl elongation. Plant Cell 21:1341–1359

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yanovsky MJ, Casal JJ, Whitelam GC (1995) Phytochrome A, phytochrome B and HY4 are involved in hypocotyl growth responses to natural radiation in Arabidopsis – weak de-etiolation of the phyA mutant under dense canopies. Plant Cell Environ 18:788–794

    CAS  Google Scholar 

  • Yanovsky MJ, Kay SA (2002) Molecular basis of seasonal time measurement in Arabidopsis. Nature 419:308–312

    CAS  PubMed  Google Scholar 

  • Yanovsky MJ, Mazzella MA, Casal JJ (2000) A quadruple photoreceptor mutant still keeps track of time. Curr Biol 10:1013–1015

    CAS  PubMed  Google Scholar 

  • Yeh KC, Lagarias JC (1998) Eukaryotic phytochromes – light-regulated serine/threonine protein kinases with histidine kinase ancestry. Proc Natl Acad Sci U S A 95:13976–13981

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang Q, Li H, Li R, Hu R, Fan C, Chen F, Wang Z, Liu X, Fu Y, Lin C (2008) Association of the circadian rhythmic expression of GmCRY1a with a latitudinal cline in photoperiodic flowering of soybean. Proc Natl Acad Sci U S A 105:21028–21033

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang YC, Gong SF, Li QH, Sang Y, Yang HQ (2006) Functional and signaling mechanism analysis of rice CRYPTOCHROME 1. Plant J 46:971–983

    CAS  PubMed  Google Scholar 

  • Zuo Z, Liu H, Liu B, Liu X, Lin C (2011) Blue light-dependent interaction of CRY2 with SPA1 regulates COP1 activity and floral initiation in Arabidopsis. Curr Biol 21:841–847

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James L. Weller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Weller, J.L., Kendrick, R.E. (2015). Photomorphogenesis and Photoperiodism in Plants. In: Björn, L. (eds) Photobiology. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1468-5_19

Download citation

Publish with us

Policies and ethics