Skip to main content

Prime Ideals in Polynomial and Power Series Rings over Noetherian Domains

  • Chapter
  • First Online:
Commutative Algebra

Abstract

In this article we survey recent results concerning the set of prime ideals in two-dimensional Noetherian integral domains of polynomials and power series. We include a new result that is related to current work of the authors [Celikbas et al., Prime Ideals in Quotients of Mixed Polynomial-Power Series Rings; see http://www.math.unl.edu/~swiegand1 (preprint)]: Theorem 5.4 gives a general description of the prime spectra of the rings \(R[\![x,y]\!]/P,R[\![x]\!][y]/Q\) and R[y][​[x]​]∕Q′, where x and y are indeterminates over a one-dimensional Noetherian integral domain R and P, Q, and Q′ are height-one prime ideals of R[​[x, y]​], R[​[x]​][y], and R[y][​[x]​], respectively. We also include in this survey recent results of Eubanks-Turner, Luckas, and Saydam describing prime spectra of simple birational extensions R[​[x]​][f(x)∕g(x)] of R[​[x]​], where f(x) and g(x) are power series in R[​[x]​] such that f(x) ≠ 0 and is a prime ideal of R[​[x]​][y]—this is a special case of Theorem 5.4. We give some examples of prime spectra of homomorphic images of mixed power series rings when the coefficient ring R is the ring of integers \(\mathbb{Z}\) or a Henselian domain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For the definition of “excellent ring” see [15, p. 260]. Basically “excellence” means the ring is catenary and has other nice properties that polynomial rings over a field possess.

  2. 2.

    Essentially a “Henselian” ring is one that satisfies Hensel’s Lemma; see the definition in [20].

  3. 3.

    Since axiom II 0 holds, this axiom could be stated here without saying “v is not maximal.”

  4. 4.

    The term “Le (T)” is defined in Notation 2.1.

References

  1. J.T. Arnold, Prime ideals in power series rings. In Conference on Commutative Algebra (University of Kansas, Lawrence, Kansas 1972). Lecture Notes in Mathematics, vol. 311 (Springer, Berlin, 1973), pp. 17–25

    Google Scholar 

  2. H. Bass, Algebraic K-Theory. Mathematics Lecture Note Series (W.A. Benjamin Inc, New York/Amsterdam, 1968), pp. 762

    Google Scholar 

  3. J.W. Brewer, Power Series Over Commutative Rings. Lecture Notes in Pure and Applied Mathematics, vol. 64 (Marcel Dekker Inc, New York, 1981)

    Google Scholar 

  4. E. Celikbas, C. Eubanks-Turner, S. Wiegand, Prime Ideals in Quotients of Mixed Polynomial-Power Series Rings. See http://www.math.unl.edu/~swiegand1 (preprint)

  5. C. Eubanks-Turner, M. Luckas, S. Saydam, Prime ideal in birational extensions of two-dimensional power series rings. Comm. Algebra 41(2), 703–735 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  6. W. Heinzer, S. Wiegand, Prime ideals in two-dimensional polynomial rings. Proc. Am. Math. Soc. 107(3), 577–586 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  7. W. Heinzer, C. Rotthaus, S. Wiegand, Mixed polynomial-power series rings and relations among their spectra. In Multiplicative Ideal Theory in Commutative Algebra (Springer, New York, 2006), pp. 227–242

    Google Scholar 

  8. R.C. Heitmann, Prime ideal posets in Noetherian rings. Rocky Mountain J. Math. 7(4), 667–673 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  9. M. Hochster, Prime ideal structure in commutative rings. Trans. Am. Math. Soc. 142, 43–60 (1969)

    Article  MATH  MathSciNet  Google Scholar 

  10. I. Kaplansky, Commutative Rings (Allyn and Bacon Inc, Boston, 1970)

    MATH  Google Scholar 

  11. K. Kearnes, G. Oman, Cardinalities of residue fields of Noetherian integral domains. Comm. Algebra, 38, 3580–3588 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  12. W. Lewis, The spectrum of a ring as a partially ordered set. J. Algebra 25, 419–434 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  13. W. Lewis, J. Ohm, The ordering of Spec R. Can. J. Math. 28, 820–835 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  14. A. Li, S. Wiegand, Prime ideals in two-dimensional domains over the integers. J. Pure Appl. Algebra 130, 313–324 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  15. H. Matsumura, Commutative Ring Theory, 2nd edn. Cambridge Studies in Advanced Mathematics, vol. 8 (Cambridge University Press, Cambridge, 1989). Translated from the Japanese by M. Reid

    Google Scholar 

  16. S. McAdam, Saturated chains in Noetherian rings. Indiana Univ. Math. J. 23, 719–728 (1973/1974)

    Google Scholar 

  17. S. McAdam, Intersections of height 2 primes. J. Algebra 49(2), 315–321 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  18. M.P. Murthy, A note on factorial rings. Archiv der Mathematik 15(1), 418–420 (1964)

    Article  MATH  MathSciNet  Google Scholar 

  19. M. Nagata, On the chain problem of prime ideals. Nagoya Math. J. 10, 51–64 (1956)

    MATH  MathSciNet  Google Scholar 

  20. M. Nagata, Local Rings. Interscience Tracts in Pure and Applied Mathematics, vol. 13 (Interscience Publishers a division of John Wiley and Sons, New York-London, 1962)

    Google Scholar 

  21. L.J. Ratliff, Chain Conjectures in Ring Theory: An Exposition of Conjectures on Catenary Chains. Lecture Notes in Mathematics, vol. 647 (Springer, Berlin, 1978)

    Google Scholar 

  22. A.S. Saydam, S. Wiegand, Noetherian domains with the same prime ideal structure as \(\mathbb{Z}_{(2)}[x]\). Arab. J. Sci. Eng. Sect. C Theme Issues (Comm. Algebra) 26(1), 187–198, (2001)

    Google Scholar 

  23. C. Shah, Affine and projective lines over one-dimensional semilocal domains. Proc. Am. Math. Soc. 124(3), 697–705 (1996)

    Article  MATH  Google Scholar 

  24. S. Wiegand, Locally maximal Bezout domains. Am. Math. Soc. 47, 10–14 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  25. S. Wiegand, Intersections of prime ideals in Noetherian rings. Comm. Algebra 11, 1853–1876 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  26. R. Wiegand, The prime spectrum of a two-dimensional affine domain. J. Pure Appl. Algebra 40(2), 209–214 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  27. S. Wiegand, R. Wiegand, The maximal ideal space of a Noetherian ring. J. Pure Appl. Algebra 08, 129–141 (1976)

    Article  MathSciNet  Google Scholar 

  28. R. Wiegand, S. Wiegand, Prime ideals and decompositions of modules. In Non-Noetherian Commutative Ring Theory, ed. by S. Chapman, S. Glaz. Mathematics and its Applications, vol. 520 (Kluwer Academic Publishers, Dordrecht, 2000), pp. 403–428

    Google Scholar 

  29. R. Wiegand, S. Wiegand, Prime ideals in Noetherian rings: a survey. In Ring and Module Theory, ed. by T. Albu, G.F. Birkenmeier, A. Erdo u gan, A. Tercan (Birkhäuser, Boston, 2010), pp. 175–193

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sylvia Wiegand .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Celikbas, E., Eubanks-Turner, C., Wiegand, S. (2014). Prime Ideals in Polynomial and Power Series Rings over Noetherian Domains. In: Fontana, M., Frisch, S., Glaz, S. (eds) Commutative Algebra. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0925-4_4

Download citation

Publish with us

Policies and ethics