Skip to main content

A Polynomial Algorithm for a Class of 0–1 Fractional Programming Problems Involving Composite Functions, with an Application to Additive Clustering

  • Chapter
  • First Online:
  • 1152 Accesses

Part of the book series: Springer Optimization and Its Applications ((SOIA,volume 92))

Abstract

We derive conditions on the functions \(\varphi\), ρ, v and w such that the 0–1 fractional programming problem \(\max \limits _{x\in \{0;1\}^{n}} \frac{\varphi \circ v(x)} {\rho \circ w(x)}\) can be solved in polynomial time by enumerating the breakpoints of the piecewise linear function \(\Phi (\lambda ) =\max \limits _{x\in \{0;1\}^{n}}v(x) -\lambda w(x)\) on [0; +). In particular we show that when \(\varphi\) is convex and increasing, ρ is concave, increasing and strictly positive, v and − w are supermodular and either v or w has a monotonicity property, then the 0–1 fractional programming problem can be solved in polynomial time in essentially the same time complexity than to solve the fractional programming problem \(\max \limits _{x\in \{0;1\}^{n}} \frac{v(x)} {w(x)}\), and this even if \(\varphi\) and ρ are non-rational functions provided that it is possible to compare efficiently the value of the objective function at two given points of {0; 1}n. We apply this result to show that a 0–1 fractional programming problem arising in additive clustering can be solved in polynomial time.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    A similar model was developed independently and at the same time in the former USSR; see Mirkin [40] and the references therein.

References

  1. Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network Flows: Theory, Algorithms, and Applications. Prentice Hall, Englewood Cliffs (1993)

    MATH  Google Scholar 

  2. Arabie, P., Carroll, J.D.: MAPCLUS: a mathematical programming approach to fitting the ADCLUS model. Psychometrika 45(2), 211–235 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  3. Balinski, M.L.: On a selection problem. Manag. Sci. 17, 230–231 (1970)

    Article  MATH  MathSciNet  Google Scholar 

  4. Berge, J.M.F.T., Kiers, H.A.L.: A comparison of two methods for fitting the INDCLUS model. J. Classif. 22(2), 273–286 (2005)

    Article  Google Scholar 

  5. Billionnet, A., Minoux, M.: Maximizing a supermodular pseudoboolean function: a polynomial algorithm for supermodular cubic functions. Discrete Appl. Math. 12, 1–11 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  6. Blömer, J.: Computing sums of radicals in polynomial time. In: 32nd Annual Symposium on Foundations of Computer Science, San Juan, PR, 1991, pp. 670–677. IEEE Computer Society Press, Los Alamitos (1991)

    Google Scholar 

  7. Carroll, J.D., Arabie, P.: INDCLUS: an individual differences generalization of the ADCLUS model and the MAPCLUS algorithm. Psychometrika 48, 157–169 (1983)

    Article  Google Scholar 

  8. Carstensen, P.J.: Complexity of some parametric integer and network programming problems. Math. Program. 26(1), 64–75 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  9. Chang, C.-T.: On the polynomial mixed 0-1 fractional programming problems. Eur. J. Oper. Res. 131(1), 224–227 (2001)

    Article  MATH  Google Scholar 

  10. Charnes, A., Cooper, W.W.: Programming with linear fractional functionals. Naval Res. Logist. Q. 9, 181–186 (1962)

    Article  MATH  MathSciNet  Google Scholar 

  11. Chaturvedi, A., Carroll, J.D.: An alternating combinatorial optimization approach to fitting the INDCLUS and generalized INDCLUS models. J. Classif. 11, 155–170 (1994)

    Article  MATH  Google Scholar 

  12. Correa, J.R., Fernandes, C.G., Wakabayashi, Y.: Approximating a class of combinatorial problems with rational objective function. Math. Program. 124(1–2, Ser. B), 255–269 (2010)

    Google Scholar 

  13. Craven, B.D.: Fractional Programming. Helderman Verlag, Berlin (1988)

    MATH  Google Scholar 

  14. Cunningham, W.H.: On submodular function minimization. Combinatorica 5(3), 185–192 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  15. Desarbo, W.S.: GENNCLUS: new models for general nonhierarchical clustering analysis. Psychometrika 47(4), 449–475 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  16. Dinkelbach, W.: On nonlinear fractional programming. Manag. Sci. 13, 492–498 (1967)

    Article  MATH  MathSciNet  Google Scholar 

  17. Eisner, M.J., Severance, D.G.: Mathematical techniques for efficient record segmentation in large shared databases. J. Assoc. Comput. Mach. 23(4), 619–635 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  18. Feige, U., Mirrokni, V.S., Vondrák, J.: Maximizing non-monotone submodular functions. SIAM J. Comput. 40(4), 1133–1153 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  19. Frenk, J.B.G., Schaible, S.: Fractional programming. In: Handbook of Generalized Convexity and Generalized Monotonicity. Nonconvex Optimization and Its Applications, vol. 76, pp. 335–386. Springer, New York (2005)

    Google Scholar 

  20. Frenk, J.B.G., Schaible, S.: Fractional programming. In: Floudas, C.A., Pardalos, P.M. (eds.) Encyclopedia of Optimization, pp. 1080–1091. Springer, Berlin (2009)

    Chapter  Google Scholar 

  21. Gallo, G., Simeone, B.: On the supermodular knapsack problem. Math. Program. 45(2, Ser. B), 295–309 (1989)

    Google Scholar 

  22. Gallo, G., Grigoriadis, M.D., Tarjan, R.E.: A fast parametric maximum flow algorithm and applications. SIAM J. Comput. 18(1), 30–55 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  23. Garey, M.R., Johnson, D.S.: Computers and Intractability, A Guide to the Theory of NP-Completeness. W.H. Freeman, San Francisco (1979)

    MATH  Google Scholar 

  24. Goemans, M.X., Ramakrishnan, V.S.: Minimizing submodular functions over families of sets. Combinatorica 15(4), 499–513 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  25. Granot, F., McCormick, S.T., Queyranne, M., Tardella, F.: Structural and algorithmic properties for parametric minimum cuts. Math. Program. 135(1–2, Ser. A), 337–367 (2012)

    Google Scholar 

  26. Grötschel, M., Lovász, L., Schrijver, A.: The ellipsoid method and its consequences in combinatorial optimization. Combinatorica 1(2), 169–197 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  27. Grötschel, M., Lovász, L., Schrijver, A.: Geometric Algorithms and Combinatorial Optimization. Algorithms and Combinatorics: Study and Research Texts, vol. 2. Springer, Berlin (1988)

    Google Scholar 

  28. Gusfield, D.M.: Sensitivity analysis for combinatorial optimization. Ph.D. thesis, University of California, Berkeley (1980)

    Google Scholar 

  29. Hammer, P.L., Rudeanu, S.: Boolean Methods in Operations Research and Related Areas. Springer, Berlin (1968)

    Book  MATH  Google Scholar 

  30. Hammer, P.L., Hansen, P., Pardalos, P.M., Rader, D.J.: Maximizing the product of two linear functions in 0 − 1 variables. Optimization 51(3), 511–537 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  31. Hansen, P., Poggi de Aragão, M.V., Ribeiro, C.C.: Hyperbolic 0-1 programming and query optimization in information retrieval. Math. Program. 52(2, Ser. B), 255–263 (1991)

    Google Scholar 

  32. Hansen, P., Jaumard, B., Meyer, C.: Exact sequential algorithms for additive clustering. Technical Report G-2000-06, GERAD (March 2000)

    Google Scholar 

  33. Hochbaum, D.S.: Polynomial time algorithms for ratio regions and a variant of normalized cut. IEEE Trans. Pattern Anal. Mach. Intell. 32(5), 889–898 (2010)

    Article  MathSciNet  Google Scholar 

  34. Ivănescu (Hammer), P.L.: Some network flow problems solved with pseudo-Boolean programming. Oper. Res. 13, 388–399 (1965)

    Google Scholar 

  35. Iwata, S.: A faster scaling algorithm for minimizing submodular functions. SIAM J. Comput. 32(4), 833–840 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  36. Iwata, S., Fleischer, L., Fujishige, S.: A combinatorial strongly polynomial algorithm for minimizing submodular functions. J. ACM 48(4), 761–777 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  37. Kiers, H.A.L.: A modification of the SINDCLUS algorithm for fitting the ADCLUS and INDCLUS. J. Classif. 14(2), 297–310 (1997)

    Article  MATH  Google Scholar 

  38. Lee, M., Navarro, D.: Minimum description length and psychological clustering models. In: Grunwald, P., Myung, I., Pitt, M. (eds.) Advances in Minimum Description Length Theory and Applications. Neural Information Processing Series MIT Press, pp. 355–384 (2005). https://mitpress.mit.edu/books/advances-minimum-description-length

  39. McCormick, S.T.: Chapter 7. Submodular function minimization. In: Aardal, K., Nemhauser, G.L., Weismantel, R. (eds.) Handbook on Discrete Optimization, pp. 321–391. Elsevier, Amsterdam (2005). Version 3a (2008). Available at http://people.commerce.ubc.ca/faculty/mccormick/sfmchap8a.pdf

  40. Mirkin, B.G.: Additive clustering and qualitative factor analysis methods for similarity matrice. J. Classif. 4, 7–31 (1987). Erratum, J. Classif. 6, 271–272 (1989)

    Google Scholar 

  41. Nemhauser, G.L., Wolsey, L.A.: Integer and Combinatorial Optimization. Wiley, New York (1988)

    MATH  Google Scholar 

  42. Orlin, J.B.: A faster strongly polynomial time algorithm for submodular function minimization. Math. Program. 118(2, Ser. A), 237–251 (2009)

    Google Scholar 

  43. Picard, J.C., Queyranne, M.: A network flow solution to some nonlinear 0 − 1 programming problems, with applications to graph theory. Networks 12, 141–159 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  44. Qian, J., Wang, C.A.: How much precision is needed to compare two sums of square roots of integers? Inf. Process. Lett. 100(5), 194–198 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  45. Radzik, T.: Fractional combinatorial optimization. In: Floudas, C.A., Pardalos, P.M. (eds.) Encyclopedia of Optimization, pp. 1077–1080. Springer, Berlin (2009)

    Chapter  Google Scholar 

  46. Rhys, J.M.W.: A selection problem of shared fixed costs and network flows. Manag. Sci. 17, 200–207 (1970)

    Article  MATH  Google Scholar 

  47. Schaible, S.: Analyse und Anwendungen von Quotientenprogrammen, ein Beitrag zur Planung mit Hilfe der nichtlinearen Programmierung. Mathematical Systems in Economics, vol. 42. Verlag Anton Hain, Königstein/Ts. (1978)

    Google Scholar 

  48. Schaible, S., Shi, J.: Recent developments in fractional programming: single-ratio and max-min case. In: Nonlinear Analysis and Convex Analysis, pp. 493–506. Yokohama Publishers, Yokohama (2004)

    Google Scholar 

  49. Schrijver, A.: A combinatorial algorithm minimizing submodular functions in strongly polynomial time. J. Comb. Theory Ser. B 80(2), 346–355 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  50. Shepard, R.N., Arabie, P.: Additive clustering: representation of similarities as combinations of discrete overlapping properties. Psychol. Rev. 86(2), 87–123 (1979)

    Article  Google Scholar 

  51. Stancu-Minasian, I.M.: Fractional Programming: Theory, Methods, and Applications. Kluwer, Dordrecht (1997)

    Book  MATH  Google Scholar 

  52. Stancu-Minasian, I.M.: A sixth bibliography of fractional programming. Optimization 55(4), 405–428 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  53. Topkis, D.M.: Minimizing a submodular function on a lattice. Oper. Res. 26(2), 305–321 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  54. Topkis, D.M.: Supermodularity and Complementarity. Frontiers of Economic Research. Princeton University Press, Princeton (1998)

    Google Scholar 

  55. Ursulenko, O.: Exact methods in fractional combinatorial optimization. ProQuest LLC, Ann Arbor, MI. Ph.D. thesis, Texas A&M University (2009)

    Google Scholar 

  56. Zadeh, N.: A bad network problem for the simplex method and other minimum cost flow algorithms. Math. Program. 5, 255–266 (1973)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre Hansen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Hansen, P., Meyer, C. (2014). A Polynomial Algorithm for a Class of 0–1 Fractional Programming Problems Involving Composite Functions, with an Application to Additive Clustering. In: Aleskerov, F., Goldengorin, B., Pardalos, P. (eds) Clusters, Orders, and Trees: Methods and Applications. Springer Optimization and Its Applications, vol 92. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0742-7_2

Download citation

Publish with us

Policies and ethics