Skip to main content

Advances in In Silico Research on Nerve Agents

  • Chapter
  • First Online:
Practical Aspects of Computational Chemistry III

Abstract

Nerve-agents (NAs) are toxic environment contaminants causing massive health hazard to the plant, animal, and civilian populations. Moreover, these materials have the properties of adsorption on various artificial surfaces which include cement, paints, metal oxides and clay minerals. These adsorption properties also threaten long-lasting toxic after-effects of NA exposure to the environment. Modeling these diverse NA-exposure characteristics through computational techniques has been always of great importance because of the restrictions in using such materials directly in the experiments due to their high toxicity. The present review discusses the recent advancements in the in silico research of NA, which include their conformational, biological and surface-occlusion properties. There are some positive sides of NA-adsorption also. The adsorption properties of NAs on oxide surfaces are used as binder to remove and subsequently deactivate them through chemical treatments. Moreover, NA adsorption on various surfaces is also useful to design materials to detect those agents using spectroscopic techniques. The present review also discusses the theoretical advancements in these directions in details. All of these discussions are mostly based on the results of the state of the art quantum-chemical computations. Related experimental results are also discussed to validate the results from such theoretical approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Toy ADF, Walsh EN (1987) Phosphorus chemistry in everyday living, 2nd edn. ACS, Washington, DC

    Google Scholar 

  2. Kim K, Tasy OG, Atwood DA, Churchill DG (2011) Chem Rev 111:5345–5403

    CAS  Google Scholar 

  3. Malany S, Sawai M, Sikorski SR, Seravalli J, Quinn DM, Radić Z, Taylor P, Kronman C, Velan B, Shafferman A (2000) J Am Chem Soc 122:2981–2987

    CAS  Google Scholar 

  4. Sussman JL, Harel M, Frowlow F, Oefner C, Goodman A, Toker L, Silman I (1991) Science 253:872

    CAS  Google Scholar 

  5. Harel M, Quinn DM, Nair HK, Silman I, Sussman JL (1996) J Am Chem Soc 118:2340

    CAS  Google Scholar 

  6. Ariel N, Ordentlich A, Barak D, Bino T, Velan B, Shafferman A (1998) Biochem J 335:95

    CAS  Google Scholar 

  7. Gentry MK, Doctor BP (1991) In: Mossoulie J, Bacou F, Bernard E, Chattonet A, Doctor BP, Quinn DM (eds) Cholinesterases: structure, function, mechanism, genetics, and cell biology. American Chemical Society, Washington, DC, p 394

    Google Scholar 

  8. Taylor P, Lappi S (1975) Biochemistry 14:1989

    CAS  Google Scholar 

  9. Deakyne CA, Mout-Ner (Moutnet) M (1999) J Am Chem Soc 121:1546

    CAS  Google Scholar 

  10. Taylor P (2001) In: Hardman JG, Limbird LE (eds) Goodman and Gilman’s the pharmaceutical basis of therapeutics, 10th edn. McGraw-Hill, New York, p 175

    Google Scholar 

  11. Benchop HP, Keijer JH (1966) Biochim Biophys Acta 128:586

    Google Scholar 

  12. Ordenlich A, Kronman C, Barak D, Stein D, Ariel N, Mercus D, Valen B, Shafferman A (1993) FEBS Lett 334:215

    Google Scholar 

  13. Hosea WA, Radić Z, Tsigelny I, Berman HA, Quinn DM, Taylor P (1996) Biochemistry 35:10995

    CAS  Google Scholar 

  14. Millard CB, Kryger G, Ordentlich A, Greenblatt HM, Harel M, Raves ML, Segall Y, Barak D, Shafferman A, Silman I, Sussman JL (1999) Biochemistry 38:7032

    CAS  Google Scholar 

  15. Nachon F, Asojo OA, Brogstahl GEO, Masson P, Lockridge O (2005) Biochemistry 44:1154

    CAS  Google Scholar 

  16. Ekström F, Akfur C, Tunemalm A-K, Lundberg S (2006) Biochemistry 45:74

    Google Scholar 

  17. Ordentlich A, Barak D, Kronmann C, Benschop HP, De Jong LPA, Ariel N, Barak R, Segall Y, Velan B, Shafferman A (1999) Biochemistry 38:3055

    CAS  Google Scholar 

  18. Jennings LL, Malecki M, Komives EA, Taylor P (2003) Biochemistry 42:11083

    CAS  Google Scholar 

  19. Hill CG, Li W-S, Thoden JB, Holden HM, Raushel FM (2003) J Am Chem Soc 125:8990

    CAS  Google Scholar 

  20. Michel HO, Hackley BE Jr, Berkowitz L, List G, Hackley EB, Gillian W, Pankau M (1967) Arch Biochem Biophys 121:29

    CAS  Google Scholar 

  21. Ordentlich A, Barak D, Kronmann C, Ariel N, Segall Y, Velan B, Shafferman A (1998) J Biol Chem 273:19509

    CAS  Google Scholar 

  22. Masson P, Fortier P-L, Albarte C, Froment M-T, Bartels CF, Lockridge O (1997) Biochem J 327:601

    CAS  Google Scholar 

  23. Ordentlich A, Barak D, Kronmann C, Ariel N, Segall Y, Velan B, Shafferman A (1996) J Biol Chem 271:11953

    CAS  Google Scholar 

  24. Segall Y, Waysbort D, Barak D, Ariel N, Doctor BP, Grunwald J, Ashani Y (1993) Biochemistry 32:13441

    CAS  Google Scholar 

  25. Bencsura A, Enyedy I, Kovach IM (1995) Biochemistry 34:8989

    CAS  Google Scholar 

  26. Majumdar D, Roszak S, Leszczynski J (2007) J Mol Phys 105:2551

    CAS  Google Scholar 

  27. Parr RG, Yang W (1989) Density functional theory of atoms and molecules. Oxford University Press, New York

    Google Scholar 

  28. Becke AD (1993) J Chem Phys 98:5648

    CAS  Google Scholar 

  29. Vosko SH, Wilk L, Nausair M (1980) Can J Phys 58:1200

    CAS  Google Scholar 

  30. Lee C, Wang W, Parr RG (1988) Phys Rev B 37:785

    CAS  Google Scholar 

  31. Vistoli G, Pedretti A, Testa L, Testa B (2002) J Am Chem Soc 124:7472

    CAS  Google Scholar 

  32. Møller C, Plesset M (1934) Phys Rev 46:618

    Google Scholar 

  33. Cothia C, Pauling P (1969) Nature (London) 223:919

    Google Scholar 

  34. Cothia C, Pauling P (1970) Proc Natl Acad Sci U S A 65:477

    Google Scholar 

  35. Svinning T, Sorum H (1975) Acta Crystallogr 31:1581

    Google Scholar 

  36. Jensen B (1975) Acta Chem Scand B 29:531

    CAS  Google Scholar 

  37. Jensen B (1982) Acta Crystallogr B 38:1982

    Google Scholar 

  38. Culvenor CCJ, Ham NS (1966) Chem Commun 15:537

    Google Scholar 

  39. Herdkoltz JK, Sass RL (1970) BioChem Biophys Res Commun 40:583

    Google Scholar 

  40. Walker ARH, Suenram RD, Samuels A, Jensen J, Ellzy MW, Lochner JM, Zeorka D (2001) J Mol Spectrosc 207:77

    Google Scholar 

  41. Suenram RD, DaBeu RS, Walker ARH, Lavrich RJ, Plusquellic DF, Ellzy MW, Lochner JM, Cash L, Jensen JO, Samules AC (2004) J Mol Spectrosc 224:176

    CAS  Google Scholar 

  42. Majumdar D, Roszak S, Leszczynski J (2006) J Phys Chem B 110:13597

    CAS  Google Scholar 

  43. Fleming CD, Edwards CC, Kirby SD, Maxwell DM, Potter PM, Cerasoli DM, Redinbo MR (2007) Biochemistry 46:5063

    CAS  Google Scholar 

  44. Sanson B, Nachon F, Colletier J-P, Froment M-T, Toker L, Greenblatt HM, Sussman JL, Ashani Y, Masson P, Silman I, Wiek M (2009) J Med Chem 52:7593

    CAS  Google Scholar 

  45. Paukku Y, Michalkova A, Majumdar D, Leszczynski J (2006) Chem Phys Lett 422:317

    CAS  Google Scholar 

  46. Haviv H, Wong DM, Greenblatt HM, Carlier PR, Pang Y-P, Silman I, Sussman JLJ (2005) Am Chem Soc 127:11029–11036

    CAS  Google Scholar 

  47. Wang J, Gu J, Leszczynski J (2005) J Phys Chem B 109:13761

    CAS  Google Scholar 

  48. Wang J, Gu J, Leszczynski J (2006) Chem Phys Lett 431:149

    CAS  Google Scholar 

  49. Wang J, Gu J, Leszczynski J (2006) Biomol Struct Dyn 24:139

    Google Scholar 

  50. Xu Y, Shen J, Luo X, Silman I, Sussman JL, Chen K, Jiang H (2003) J Am Chem Soc 125:11340

    CAS  Google Scholar 

  51. Wang J, Roszak S, Gu J, Leszczynski J (2005) J Phys Chem B 109:1006

    CAS  Google Scholar 

  52. Bennet AJ, Kovach IM, Schowen RL (1988) J Am Chem Soc 110:7892

    CAS  Google Scholar 

  53. Bencsura A, Enyedy IY, Kovach IM (1996) J Am Chem Soc 118:8531

    CAS  Google Scholar 

  54. Elhanany E, Ordentlich A, Dgany O, Kaplan D, Segall Y, Barak R, Velan B, Shafferman A (2001) Chem Res Toxicol 14:912

    CAS  Google Scholar 

  55. Wang J, Gu J, Leszczynski J (2008) J Phys Chem B 112:3485

    CAS  Google Scholar 

  56. Wang J, Gu J, Leszczynski J, Feliks M, Sokalski WA (2007) J Phys Chem B 111:2404

    CAS  Google Scholar 

  57. Wang J, Gu J, Leszczynski J (2006) J Phys Chem B 110:7567

    CAS  Google Scholar 

  58. Cossi M, Barone V, Cammi R, Tomasi J (1996) Chem Phys Lett 255:327

    CAS  Google Scholar 

  59. Stewart JJP (2007) J Mol Model 13:1173

    CAS  Google Scholar 

  60. Pellenq RJ-M, Kushimac A, Shahsavarib R, Van Vlietd KJ, Buehlerb MJ, Yi S, Ulmb F-J (2009) Proc Natl Acad Sci U S A 106:16102

    CAS  Google Scholar 

  61. Seymour RB, Kauffman GB (1992) J Chem Educ 69:909

    CAS  Google Scholar 

  62. Clayton AM (1987) Epoxy resins: chemistry and technology, 2nd edn. Marcel Dekker, New York

    Google Scholar 

  63. Zhao Y, Truhlar DG (2008) Theor Chem Acc 120:215

    CAS  Google Scholar 

  64. Michalkova A, Leszczynski J (2009) In: Leszczynski J, Shukla M (eds) Practical aspects of computational chemistry: methods, concepts and applications. Springer, New York, p 277

    Google Scholar 

  65. Michalkova A, Gorb L, Ilchenko M, Zhikol OA, Shishkin OV, Leszczynski J (2004) J Phys Chem B 108:1918

    CAS  Google Scholar 

  66. Benco L, Tunega D, Hafner J, Lischka H (2001) Am Mineral 86:1057

    CAS  Google Scholar 

  67. Michalkova A, Martinez J, Zhikol OA, Gorb L, Shishkin OV, Leszczynska D, Leszczynski J (2006) J Phys Chem B 110:21175

    CAS  Google Scholar 

  68. Svensson M, Humbel S, Froese RDJ, Matsubara T, Sieber S, Morokuma K (1996) J Phys Chem 100:19357

    CAS  Google Scholar 

  69. Yang Y-C, Baker JA, Ward JR (1992) Chem Rev 92:1729

    CAS  Google Scholar 

  70. Yang Y-C (1999) Acc Chem Res 32:109

    CAS  Google Scholar 

  71. Yang Y-C, Szafraniec LL, Beaudry WTJ (1993) Org Chem 58:6964

    CAS  Google Scholar 

  72. Koper O, Lucas E, Klabunde KJ (1999) J Appl Toxicol 19:S59

    CAS  Google Scholar 

  73. Klabunde KJ, Stark J, Koper O, Mohs C, Park DG, Decker S, Jiang Y, Lagadic I, Zhang DJ (1996) Phys Chem 100:12142

    CAS  Google Scholar 

  74. Stark JV, Park DG, Lagadic I, Klabunde KJ (1996) Chem Mater 8:1904

    CAS  Google Scholar 

  75. Lin S-T, Klabunde KJ (1985) Langmuir 1:600

    CAS  Google Scholar 

  76. Li Y-X, Koper OB, Atteya M, Klabunde KJ (1992) Chem Mater 4:323

    CAS  Google Scholar 

  77. Wagner GW, Koper OB, Lucas E, Decker S, Klabunde KJ (2000) J Phys Chem B 104:5118

    CAS  Google Scholar 

  78. Wagner GW, Bartram PW, Koper OB, Klabunde KJ (1999) J Phys Chem B 103:3225

    CAS  Google Scholar 

  79. Michalkova A, Ilchenko M, Gorb L, Leszczynski J (2004) J Phys Chem B 108:5294

    CAS  Google Scholar 

  80. Michalkova A, Paukku Y, Majumdar D, Leszczynski J (2007) Chem Phys Lett 438:72

    CAS  Google Scholar 

  81. Paukku Y, Michalkova A, Leszczynski J (2008) Struct Chem 19:307

    CAS  Google Scholar 

  82. Kolodziejczyk W, Majumdar D, Roszak S, Leszczynski J (2007) Chem Phys Lett 450:138

    CAS  Google Scholar 

  83. Paukku Y, Michalkova A, Leszczynski J (2009) J Phys Chem C 113:1474

    CAS  Google Scholar 

  84. NRC recommendations for the disposal of chemical agents and munitions (1994) National Academy Press, Washington, DC

    Google Scholar 

  85. Groenewold GS (2010) Main Group Chem 9:221

    CAS  Google Scholar 

  86. U.S. Army’s Chemical Materials Agency, Richmond. http://www.cma.army.mil/bluegrass.aspx

  87. Farquharson S, Inscore FE, Christesen S (2006) Top Appl Phys 103:447

    CAS  Google Scholar 

  88. Gustafson RL, Martell AE (1962) J Am Chem Soc 84:2309

    CAS  Google Scholar 

  89. Ward JR, Yang YC, Wilson RB Jr, Burrows WD, Ackerman LL (1988) Bioorg Chem 16:12

    CAS  Google Scholar 

  90. Munro NB, Talmage SS, Griffin GD, Waters LC, Watson AP, King JF, Hauschild V (1999) Environ Health Perspect 107:933

    CAS  Google Scholar 

  91. Smith BM (2008) Chem Soc Rev 37:470

    CAS  Google Scholar 

  92. Holm FW (1998) NATO Sci Ser 1 22:159

    Google Scholar 

  93. Van Hooidonk C, Breebaart-Hansen JC, Recl AE (1970) Trav Chim Pays-Bas 89:289

    Google Scholar 

  94. Morales-Rojas H, Moss RA (2002) Chem Rev 102:2497

    CAS  Google Scholar 

  95. Ekerdt JG, Klabunde KJ, Shapley JR, White JM, Yates JT Jr (1988) J Phys Chem 92:6182

    CAS  Google Scholar 

  96. Wagner GW, Porcell LR, O’Connor RJ, Munavalli S, Carnes CL, Kapoor PN, Klabunde KJ (2001) J Am Chem Soc 123:1636

    CAS  Google Scholar 

  97. Gordon WO, Tissue BM, Morris JR (2007) J Phys Chem C 111:3233

    CAS  Google Scholar 

  98. Vaiss VS, Borges I Jr, Leitão AA (2011) J Phys Chem C 115:24937

    CAS  Google Scholar 

  99. Stewart JJP (1989) J Comput Chem 10:209

    CAS  Google Scholar 

  100. Stewart JJP (1989) J Comput Chem 10:221

    CAS  Google Scholar 

  101. Van Houten KA, Heath DC, Pilato RS (1998) J Am Chem Soc 120:12359

    Google Scholar 

  102. Sohn H, Létant S, Sailor MJ, Trogler WC (2000) J Am Chem Soc 122:5399

    CAS  Google Scholar 

  103. Zhang S-W, Swager TM (2003) J Am Chem Soc 125:3420

    CAS  Google Scholar 

  104. Mayers AB (1996) Chem Rev 96:911

    Google Scholar 

  105. Rousseau DL, Friedman JM, Williams PF (1979) In: Weber A (ed) Raman spectroscopy of gases and liquids, vol 11, Topics in current physics. Springer, Berlin, p 203

    Google Scholar 

  106. Majumdar D, Roszak S, Leszczynski J (2010) J Phys Chem A 114:4340

    CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the support of NSF CREST (No.: HRD-0833178), EPSCOR (Award No. 362492-190200-01\NSFEPS-0903787) and SERRI (Award No. 4000112261) grants. One of the authors (S.R.) acknowledges the financial support by a statutory activity subsidy from Polish Ministry of Science and Technology of Higher Education for the Faculty of Chemistry of Wroclaw University of Technology.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Devashis Majumdar , Szczepan Roszak or Jerzy Leszczynski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Majumdar, D. et al. (2014). Advances in In Silico Research on Nerve Agents. In: Leszczynski, J., Shukla, M. (eds) Practical Aspects of Computational Chemistry III. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-7445-7_10

Download citation

Publish with us

Policies and ethics