Skip to main content

Deformation Spaces Associated to Compact Hyperbolic Manifolds

  • Chapter
Discrete Groups in Geometry and Analysis

Part of the book series: Progress in Mathematics ((PM,volume 67))

Abstract

In this paper we take a first step toward understanding representations of cocompact lattices in SO(n,1) into arbitrary Lie groups by studying the deformations of rational representations — see Proposition 5.1 for a rather general existence result. This proposition has a number of algebraic applications. For example, we remark that such deformations show that the Margulis Super-Rigidity Theorem, see [30], cannot be extended to the rank 1 case. We remark also that if Γ ⊂ SO(n,1) is one of the standard arithmetic examples described in Section 7 then Γ has a faithful representation ρ′ in SO(n+1), the Galois conjugate of the uniformization representation, and Proposition 5.1 may be used to deform the direct sum of ρ′ and the trivial representation in SO(n+2) thereby constructing non-trivial families of irreducible orthogonal representations of Γ. However, most of this paper is devoted to studying certain spaces of representations which are of interest in differential geometry in a sense which we now explain.

The first author was partially supported by NSF grant #MCS77-24103, the second by NSF grant #MCS-8200639.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. B.N. Apanasov, Nontriviality of Teichmuller space for Kleinian group in space, Riemann Surfaces and Related Topics, Proceedings of the 1978 Stony Brook Conference, Annals of Math. Studies No. 97, Princeton University Press (1980), 21-31.

    Google Scholar 

  2. M. Berger, P. Gauduchon and E. Mazet, Le Spectre d’une Variete Riemanniene, Lecture Notes in Mathematics, 194, Springer-Verlag, New York.

    Google Scholar 

  3. M. Berger, Quelque formules de variation pour une structure Riemanniene, Ann. Scient. Ec. Norm. Sup., 4e serie, t · 3 (1970), 285–294.

    Google Scholar 

  4. D. Birkes, Orbits of linear algebraic groups, Annals of Math. 93 (1971), 459–475.

    Article  Google Scholar 

  5. A. Borel, Compact Clifford-Klein forms of symmetric spaces, Topology 2 (1963), 111–122.

    Article  Google Scholar 

  6. A. Borel and N. Wallach, Continuous Cohomology, Discrete Subgroups, and Representations of Reductive Groups, Annals of Math. Studies No. 94, Princeton University Press (1980).

    Google Scholar 

  7. S.S. Chen and L. Greenberg, Hyperbolic Spaces, Contributions to Analysis, A Collection of Papers Dedicated to Lipman Bers, Academic Press (1974), 49-87.

    Google Scholar 

  8. P. Cohen, Decision procedures for real and p-adic fields, Comm. Pure Appl. Math., 22 (1969), 131–135.

    Article  Google Scholar 

  9. S.P. Eilenberg and S. MacLane, Cohomology theory in abstract groups I, Annals of Math. 48 (1947), 51–78.

    Article  Google Scholar 

  10. J. Gasqui and H. Goldschmidt, theoremes de dualite en geometrie conforme I and II, preprints.

    Google Scholar 

  11. N. Koiso, On the second derivative of the total scalar curvature, Osaka Journal 16 (1979), 413–421.

    Google Scholar 

  12. B. Kostant, The principal three-dimensional subgroup and the Betti numbers of a complex simple Lie group, Amer. J. of Math 81 (1959), 973–1032.

    Article  Google Scholar 

  13. W.L. Lok, Deformations of locally homogeneous spaces and Kleinian groups, thesis, Columbia University (1984).

    Google Scholar 

  14. J. Millson, On the first Betti number of a constant negatively curved manifold, Annals of Math. 104 (1976), 235–247.

    Article  Google Scholar 

  15. J. Millson and M.S. Raghunathan, Geometric construction of cohomology for arithmetic groups I, Geometry and Analysis, Papers Dedicated to the Memory of V.K. Patodi, Springer (1981), 103-123.

    Google Scholar 

  16. J. Morgan, Group actions on trees and the compactification of the spaces of classes of SO(n,1)-representations, preprint.

    Google Scholar 

  17. D. Mumford and J. Fogarty, Geometric Invariant Theory, Ergenbnisse der Mathematik und ihrer Grenzgebiete 34, Springer (1982).

    Google Scholar 

  18. O.T. O’Meara, Introduction to Quadratic Forms, Die Grundlehren der Mathematischen Wissenschaften, 117, Springer (1963).

    Google Scholar 

  19. P.E. Newstead, Introduction to Moduli Problems and Orbit Spaces, Tata Institute Lecture Notes, Springer (1978).

    Google Scholar 

  20. R. Palais, On the existence of slices for actions of non-compact Lie groups, Annals of Math. (2) 73 (1961), 295–323.

    Article  Google Scholar 

  21. M.S. Raghunathan, Discrete Subgroups of Lie Groups, Ergebnisse der Mathematik und ihrer Grenzgebiete 68, Springer (1972).

    Google Scholar 

  22. M.S. Raghunathan, On the first cohomology of discrete subgroups of semi-simple Lie groups, Amer. J. Math. 87 (1965), 103–139.

    Article  Google Scholar 

  23. J.P. Serre, Trees, Springer (1980).

    Google Scholar 

  24. D. Sullivan, Discrete conformai groups and measurable dynamics, Bull of the American Math. Soc. (new series) 6 (1982), 57–73.

    Article  Google Scholar 

  25. W.P. Thurston, The Geometry and Topology of Three-Manifolds, Princeton University Lecture Notes.

    Google Scholar 

  26. V.S. Varadarajan, Harmonic Analysis on Real Reductive Groups, Lecture Notes in Mathematics 576, Springer.

    Google Scholar 

  27. C. Kourouniotis, Deformations of hyperbolic structures on manifolds of several dimensions, thesis, University of London, 1984.

    Google Scholar 

  28. W. Goldman and J. Millson, Local rigidity of discrete groups acting on complex hyperbolic space. To appear in Inv. Math.

    Google Scholar 

  29. R. Schoen, Conformai deformations of a Riemannian metric to constant scalar curvature, J. Differential Geometry 20 (1984), 479–495.

    Google Scholar 

  30. R. Zimmer, Ergodic Theory and Semisimple Groups, Monographs in Mathematics, Birkhauser, 1984.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer Science+Business Media New York

About this chapter

Cite this chapter

Johnson, D., Millson, J.J. (1987). Deformation Spaces Associated to Compact Hyperbolic Manifolds. In: Howe, R. (eds) Discrete Groups in Geometry and Analysis. Progress in Mathematics, vol 67. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4899-6664-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-6664-3_3

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4899-6666-7

  • Online ISBN: 978-1-4899-6664-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics