Skip to main content

Van der Waals Interactions in Density Functional Theory

  • Chapter

Abstract

The history of van der Waals or dispersion forces dates a long way back [1, 2]. The recent book Van der Waals and Molecular Sciences [1] gives a detailed account of van der Waals’s own contributions and life-long interest in the field. It is interesting to note that this truly quantum-mechanical problem [3, 4, 5] has been addressed by theorists long before the birth of quantum mechanics. The force between atoms, molecules, clusters, complexes, surfaces, and other fragments of matter is dominated by the weak but long-ranged van der Waals interactions at large separations. This is the region that has been primarily addressed. Calculations of the interaction potential between neutral species were first done for molecules [6, 7], leading to the well known asymptotic R −6 form of London [5]. The asymptotic z −3 form of the interaction potential between a neutral atom and a surface was first identified by Lennard-Jones [8], with subsequent refined treatments of the atom and surface polarizabilities [9, 10]. For the interaction between solid bodies, general formulas have been derived [11], which for flat surfaces a long distance d apart give an interaction energy that varies as d −2 [12]. For very large distances, where the limited magnitude of the velocity of light matters, retardation effects are important [13]. Such relativistic effects are physically interesting but beyond the scope of the present work.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Y. Kipnis, B. E. Yavelov, and J. S. Rowlinson, Van der Waals and Molecular Sciences (Oxford, New York, 1996).

    Google Scholar 

  2. H. Margenau and N. R. Kestner, Theory of Intermolecular Forces (Pergamon Press, Oxford, 1969).

    Google Scholar 

  3. D. Langbein, Theory of Van der Waals Attraction (Springer Verlag, Berlin, 1974).

    Google Scholar 

  4. R. Eisenshitz and F. London, Z. Phys. 60, 491 (1930).

    Article  ADS  Google Scholar 

  5. F. London, Z. Phys. 63, 245 (1930).

    Article  ADS  MATH  Google Scholar 

  6. M. Reinganum, Ann. Phys. (Paris) 38, 649 (1912).

    ADS  MATH  Google Scholar 

  7. S. C. Wang, Z. Phys. 28, 663 (1927).

    MATH  Google Scholar 

  8. J. E. Lennard-Jones, Trans. Faraday. Soc. 28, 333 (1932).

    Article  Google Scholar 

  9. J. H. de Boer, Trans. Faraday Soc. 32, 21 (1936).

    Google Scholar 

  10. H. C. Hamaker, Physica 4, 1058 (1937).

    Article  ADS  Google Scholar 

  11. E. M. Lifshitz, Sov. Phys. 2, 73 (1956).

    Google Scholar 

  12. I. E. Dzyaloshinskii, E. M. Lifshitz, and L. P. Pitaevskii, Adv. Phys. 10, 73 (1961).

    Article  MathSciNet  Google Scholar 

  13. H. B. G. Casimir and D. Polder, Phys. Rev. 73, 360 (1948).

    Article  ADS  MATH  Google Scholar 

  14. J. Israelachvilii, Intermolecular and Surface Forces (Academic, London, 1991).

    Google Scholar 

  15. A. Buckingham, P. Fowler, and J. Hutson, Chem. Rev. 88, 963 (1988).

    Article  Google Scholar 

  16. G. Chalasinski and M. M. Szczesinak, Chem. Rev. 94, 1723 (1994).

    Article  Google Scholar 

  17. See, e.g., U. Hartmann, in Scanning Tunneling Microscopy III, edited by R. Wiesendanger and H.-J. Guentherodt (Springer, Berlin-Heidelberg, 1993), p. 293.

    Chapter  Google Scholar 

  18. M. Spackman, J. Chem. Phys. 94, 1295 (1991).

    Article  ADS  Google Scholar 

  19. A. Landragin, J. Y. Courtois, G. Labeyrie, N. Vansteenkiste, C. I. Westbrook, and A. Aspect, Phys. Rev. Lett. 77, 1464 (1996).

    Article  ADS  Google Scholar 

  20. J. Israelachvilii and H. Wennerström, Nature 379, 219 (1996).

    Article  ADS  Google Scholar 

  21. S. Andersson, L. Wilzen, and M. Persson, Phys. Rev. B 38, 2967 (1988).

    Article  ADS  Google Scholar 

  22. S. Andersson, M. Persson, and J. Harris, Surf. Sci. 360, L499 (1996).

    Article  Google Scholar 

  23. R. O. Jones and O. Gunnarsson, Rev. Mod. Phys. 61, 689 (1989).

    Article  ADS  Google Scholar 

  24. K. Burke, J. Perdew, and Y. Wang, “Derivation of a generalized gradient approximation: the PW91 density functional”, in this volume.

    Google Scholar 

  25. D. C. Langreth and J. P. Perdew, Solid State Commun. 17, 1425 (1975).

    Article  ADS  Google Scholar 

  26. O. Gunnarsson and B. I. Lundqvist, Phys. Rev. B 13, 4274 (1976).

    Article  ADS  Google Scholar 

  27. D. C. Langreth and J. P. Perdew, Phys. Rev. B 15, 2884 (1977).

    Article  ADS  Google Scholar 

  28. J. Harris, Phys. Rev. B 31, 1770 (1985).

    Article  ADS  Google Scholar 

  29. J. F. Dobson, in Topics in Condensed Matter Physics, edited by M. P. Das (Nova, N. Y., 1994), p. 121.

    Google Scholar 

  30. B. I. Lundqvist, Y. Andersson, H. Shao, S. Chan, and D. C. Langreth, Int. J. Quantum. Chem. 56, 247 (1995).

    Article  Google Scholar 

  31. E. Zaremba and W. Kohn, Phys. Rev. B 13, 2270 (1976).

    Article  ADS  Google Scholar 

  32. W. Kohn and W. Hanke, Short-and long-wavelength contributions to the exchange-correlation energy of a metal surface, unpublished.

    Google Scholar 

  33. K. Rapcewicz and N. W. Ashcroft, Phys. Rev. B 44, 4032 (1991).

    Article  ADS  Google Scholar 

  34. Y. Andersson, D. C. Langreth, and B. I. Lundqvist, Phys. Rev. Lett. 76, 102 (1996).

    Article  ADS  Google Scholar 

  35. E. Hult, Y. Andersson, B. I. Lundqvist, and D. C. Langreth, Phys. Rev. Lett. 77, 2029 (1996).

    Article  ADS  Google Scholar 

  36. J. F. Dobson and B. P. Dinte, Phys. Rev. Lett. 76, 1780 (1996).

    Article  ADS  Google Scholar 

  37. J. F. Dobson, B. P. Dinte, and J. Wang, “Van der Waals functionals via local approximations for susceptibilities”, in this volume.

    Google Scholar 

  38. P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964).

    Article  MathSciNet  ADS  Google Scholar 

  39. W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965).

    Article  MathSciNet  ADS  Google Scholar 

  40. D. C. Langreth and S. H. Vosko, in Advances in Quantum Chemistry, edited by S. B. Trickey (Academic Press, New York, 1990), Vol. 21, p. 175.

    Google Scholar 

  41. D. C. Langreth and S. H. Vosko, Phys. Rev. Lett. 59, 497 (1987).

    Article  ADS  Google Scholar 

  42. S. Lundqvist, Ark. Phys. 28, 399 (1965).

    Google Scholar 

  43. A. Zangwill and A. H. Levine, Am. J. Phys. 53, 1177 (1985).

    Article  ADS  Google Scholar 

  44. A. Bagchi, N. Kar, and R. G. Barrera, Phys. Rev. Lett. 40, 803 (1978).

    Article  ADS  Google Scholar 

  45. K. L. Kliewer, Surf. Sci. 101, 57 (1980).

    Article  ADS  Google Scholar 

  46. P. Apell, Physica Scripta 25, 57 (1982).

    Article  ADS  Google Scholar 

  47. P. Ahlqvist and P. Apell, Physica Scripta 25, 587 (1982).

    Article  ADS  Google Scholar 

  48. P. J. Feibelman, Prog. in Surf. Sci. 12, 287 (1982).

    Article  ADS  Google Scholar 

  49. D. C. Langreth and M. J. Mehl, Phys. Rev. Lett. 47, 446 (1981).

    Article  ADS  Google Scholar 

  50. D. C. Langreth and M. J. Mehl, Phys. Rev. B 28, 18090 (1983).

    Article  Google Scholar 

  51. C. Mavroyannis and M. J. Stephen, Mol. Phys. 5, 629 (1962).

    Article  ADS  Google Scholar 

  52. K. T. Tang, J. M. Norbeck, and P. R. Certain, J. Chem. Phys. 64, 3063 (1976).

    Article  ADS  Google Scholar 

  53. G. Mahan, J. Chem. Phys. 76, 493 (1982).

    Article  ADS  Google Scholar 

  54. A. Dalgarno and W. Davison, in Advanced Atomic and Molecular Physics 2, edited by D. Bates and I. Esterman (Academic, Orlando, 1966).

    Google Scholar 

  55. F. Maeder and W. Kutzelnigg, Chem. Phys 42, 95 (1979).

    Article  Google Scholar 

  56. M. Marinescu, H. Sadeghpour, and A. Dalgarno, Phys. Rev. 49, 982 (1994).

    Article  ADS  Google Scholar 

  57. E. Clementi and C. Roetti, At. Data Nucl. Data Tables 14, 177 (1974).

    Article  ADS  Google Scholar 

  58. Y. Andersson and H. Rydberg, J. Chem. Phys., in press.

    Google Scholar 

  59. In Biosym, a program package available from Molecular Simulations Inc.

    Google Scholar 

  60. W. Rijks, M. van Heeringen, and P. Wormer, J. Chem. Phys. 90, 6501 (1989).

    Article  ADS  Google Scholar 

  61. S. van Gisbergen, J. Snijders, and E. Baerends, J. Chem. Phys. 103, 9347 (1995).

    Article  ADS  Google Scholar 

  62. W. Rijks and P. Wormer, J. Chem. Phys. 90, 6507 (1989).

    Article  ADS  Google Scholar 

  63. R. Amos, N. Handy, P. Knowles, J. Rice, and A. Stone, J. Phys. Chem. 89, 2186 (1985).

    Article  Google Scholar 

  64. A. Kumar and W. Meath, Mol. Phys. 75, 311 (1992).

    Article  ADS  Google Scholar 

  65. B. Jhanwar and W. Meath, Chem. Phys 67, 186 (1982).

    Article  ADS  Google Scholar 

  66. A. Dalgarno, Adv. Chem. Phys 12, 143 (1967).

    Article  Google Scholar 

  67. A. Liebsch, Phys. Rev. B 33, 7249 (1986).

    Article  ADS  Google Scholar 

  68. Y. Andersson, E. Hult, D. C. Langreth, and B. I. Lundqvist, in Proceedings of the 18th Taniguchi Symposium: Elementary Processes in Excitations and Reactions on Solid Surfaces, edited by A. Okiji, H. Kasai, and K. Makoshi (Springer, Berlin, 1996), p. 52.

    Chapter  Google Scholar 

  69. C. Holmberg, P. Apell, and J. Giraldo, Physica Scripta 33, 173 (1986).

    Article  ADS  Google Scholar 

  70. B. N. J. Persson and P. Apell, Phys. Rev. B 27, 6058 (1983).

    Article  ADS  Google Scholar 

  71. B. N. J. Persson and E. Zaremba, Phys. Rev. B 30, 5669 (1984).

    Article  ADS  Google Scholar 

  72. D. M. Bishop and J. Pipin, J. Chem. Phys. 97, 3375 (1992).

    Article  ADS  Google Scholar 

  73. H. Gollisch, J. Phys. B 17, 1463 (1984).

    Article  ADS  Google Scholar 

  74. M. Persson, private communication, 1996.

    Google Scholar 

  75. J. P. Perdew, H. Q. Tran, and E. D. Smith, Phys. Rev. B 42, 11627 (1990).

    ADS  Google Scholar 

  76. A. Kiejna, Phys. Rev. B 47, 7361 (1993).

    ADS  Google Scholar 

  77. E. Huit and A. Kiejna, Surf. Sci. 383, 88 (1997).

    Article  ADS  Google Scholar 

  78. Y. Andersson, E. Huit, P. Apell, D. C. Langreth, and B. I. Lundqvist, submitted to Solid State Commun.

    Google Scholar 

  79. W. Kohn and A. Yaniv, Phys. Rev. B 20, 4948 (1979).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Andersson, Y., Hult, E., Rydberg, H., Apell, P., Lundqvist, B.I., Langreth, D.C. (1998). Van der Waals Interactions in Density Functional Theory. In: Dobson, J.F., Vignale, G., Das, M.P. (eds) Electronic Density Functional Theory. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-0316-7_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-0316-7_17

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-0318-1

  • Online ISBN: 978-1-4899-0316-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics