Skip to main content

Runge Theory for Compact Sets

  • Chapter
  • 3352 Accesses

Part of the book series: Graduate Texts in Mathematics ((GTM,volume 172))

Abstract

In discs B, all holomorphic functions are approximated compactly by their Taylor polynomials. In particular, for every fO(B) and every compact set K in B, there exists a sequence of polynomials pnsuch that lim |f - Pn|K = 0. In arbitrary domains, polynomial approximation is not always possible; in C×, for example, there is no sequence of polynomials pn that approximates the holomorphic function l/z uniformly on a circle γ, for it would then follow that

$$$$2\pi i = \int_\gamma{\frac{{d\varsigma }}{\varsigma }}= \lim \int_\gamma{{p_n}\left( \varsigma\right)d\varsigma }= 0$$

Runge approximation theory charms by its wonderful balance between freedom and necessity.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   49.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   89.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. Burckel, R. B.: An Introduction to Classical Complex Analysis, vol. 1, Birkhäuser, 1979.

    Google Scholar 

  2. Cartan, H.: Œuvres 1, Springer, 1979.

    Google Scholar 

  3. Gazer, D.: Vorlesungen über Approximation im Komplexen, Birkhäuser, 1980.

    Google Scholar 

  4. Gazer, D.: Approximation im Komplexen, Jber. DMV86, 151–159 (1984).

    MathSciNet  Google Scholar 

  5. Gauthier, P.: Un plongement du disque unité, Sém. F. Norguet, Lect. Notes 482, 333–336 (1975).

    Google Scholar 

  6. Hartogs, F. and A. ROSENTHAL: Über Folgen analytischer Funktionen, Math. Ann. 100, 212–263 (1928).

    Article  MathSciNet  Google Scholar 

  7. Mittag-Leffler, G.: Sur une classe de fonctions entières, Proc. 3rd Int. Congr. Math., Heidelberg 1904, 258–264, Teubner, 1905.

    Google Scholar 

  8. Montel, P.: Sur les suites infinies de fonctions, Ann. Sci. Ec. Norm. Sup. (3)24, 233–334 (1907).

    MATH  Google Scholar 

  9. Newman, D. J.: An entire function bounded in every direction, Amer. Math. Monthly 83, 192–193 (1976).

    Article  MathSciNet  Google Scholar 

  10. O] Osgood, W. F.: Note on the functions defined by infinite series whose terms are analytic functions of a complex variable; with corresponding theorems for definite integrals, Ann. Math. (2)3, 25–34 (1901–1902).

    Google Scholar 

  11. Pringsheim, A.: Über eine charakteristische Eigenschaft sogenannter Trep- penpolygone und deren Anwendung auf einen Fundamentalsatz der Funktionentheorie, Sitz. Ber. Math.-Phys. Kl. Königl. Bayrische Akad. Wiss. 1915, 27–57.

    Google Scholar 

  12. Pôlya, G. and G. Szegö: Problems and Theorems in Analysis, 2 volumes, trans. C. E. BILLIGHEIMER, Springer, New York, 1976.

    Book  Google Scholar 

  13. Rubel, L. A.: How to use Runge’s theorem, L’Enseign. Math. (2)22, 185–190 (1976) and Errata ibid. (2)23, 149 (1977).

    Google Scholar 

  14. Runge, C.: Zur Theorie der analytischen Functionen, Acta Math. 6, 245–248 (1885).

    Google Scholar 

  15. Saks, S. and A. Zygmund: Analytic Functions, trans. E. J. SCOTT, 3rd ed., Elsevier, 1971.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Remmert, R. (1998). Runge Theory for Compact Sets. In: Classical Topics in Complex Function Theory. Graduate Texts in Mathematics, vol 172. Springer, New York, NY. https://doi.org/10.1007/978-1-4757-2956-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-2956-6_12

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-98221-2

  • Online ISBN: 978-1-4757-2956-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics