Skip to main content

How Primates Invented the Rainforest and Vice Versa

  • Chapter

Abstract

Fruiting trees in tropical forests depend for their existence on the animals that eat their fruit. Seeds falling below the parent plant are less likely to survive than those dispersed at a distance (Janzen, 1970; Clark and Clark, 1984; Howe et al., 1985). Primates, along with birds and bats, are the most important dispersers of seeds in the tropics (Howe, 1980, 1989; Terborgh, 1986; Fleming et al., 1987; Stiles, 1989). Of course, this was not always the case, and the evolutionary history of tropical rainforests and primates are intricately related. In fact, one might say they helped create one another through a long process of diffuse coevolution (Herrera, 1984).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allman, J.M., 1982, Reconstructing the evolution or the brain in primates through the use of comparative neurophysiological and neuroanatomical data, in: “Primate Brain Evolution,” E. Armstrong, D. Falk, eds., Plenum, New York.

    Google Scholar 

  • Bakker, R.T., 1978, Dinosaur feeding behavior and the evolution of flowering plants, Nature. 274:661–663.

    Article  Google Scholar 

  • Bakker, R.T., 1986, How dinosaurs invented flowers, Nat.Hist. 11:30–38.

    Google Scholar 

  • Beard, K.C., 1990, Gliding behavior and palaeoecology of the alleged primate family Paromomyidae (Mammalia, Dermoptera). Nature. 345: 340–341.

    Article  Google Scholar 

  • Beard, K.C., 1991, Vertical postures and climbing in the morphotype of Primatomorpha: Implications for locomotor evolution in primate history, in: Origine(s) de la Bipédie chez les Hominidés (Cahiers de Paléoanthropologie), Editions du CNRS, Paris.

    Google Scholar 

  • Cartmill, M., 1972, Arboreal adaptations and the origin of the order Primates, in: “The Functional and Evolutionary Biology of Primates,” R. Tuttle, ed., Aldine, Chicago.

    Google Scholar 

  • Cartmill, M., 1974, Rethinking primate origins, Science. 184:436–443.

    Article  PubMed  CAS  Google Scholar 

  • Cartmill, M., 1992, New views on primate origins, Evolutionary Anthropology 1:105–111.

    Article  Google Scholar 

  • Clark, D.B. and Clark, D.A., 1984, Spacing mechanisms of a tropical rain forest, evaluation of the Janzen-Connell model, Amer. Natur. 124:769–788.

    Article  Google Scholar 

  • Coe, M.J., Dilcher, D.L., Farlow, J.O., Jarzgen, D.M., and Russell, D.A., 1987, Dinosaurs and land plants, in: “The Origins of Aniosperms and Their Biological Consequences,” E.M. Friis, W.G. Chaloner, P.R. Crane, eds., Cambridge University Press, Cambridae.

    Google Scholar 

  • Colbert, E. H., 1969, “Evolution of the Vertebrates a History of the Backboned Animals Through Time,” Wiley, New York.

    Google Scholar 

  • Collinson, M.E. and Hooker, J.J., 1987, Vegetational and mammalian faunal changes in the Early Tertiary of southern England, in: “The Origins of Angiosperms and Their Biological Consequences,” E.M. Friis, W.G. Chaloner, P.R. Crane, eds., Cambridge University Press, Cambridge.

    Google Scholar 

  • Conroy G.C., 1990, “Primate Evolution,” Norton, New York.

    Google Scholar 

  • Covert, H.H., 1986, Biology of early Cenozoic primates. in: “Comparative Primate Biology Vol: 1: Systematics, Evolution, and Anatomy,” D.R. Swindler, J. Erwin, eds., Alan R. Liss, New York.

    Google Scholar 

  • Crepet, W.L. and Friis, E.M., 1987, The evolution of insect pollination in angiosperms. in: “The Origins of Angiosperms and Their Biological Consequences,” E.M. Friis, W.G. Chaloner, P.R. Crane, eds., Cambridge University Press, Cambridge

    Google Scholar 

  • Cracraft, J., 1973, Continental drift, paleoclimatology, and the evolution and biogeography of birds. J. Zool. London 169:455–545.

    Article  Google Scholar 

  • Crane, P.R., 1987, Vegetational consequences or angiosperm diversification, in: “The Origins of Angiosperms and their Biological Consequences,” E.M. Friis, W.G. Chaloner, P.R. Crane, eds., Cambridge University Press, Cambridge.

    Google Scholar 

  • Crompton, A.W. and Jenkins, F.A., 1979, Origin of mammals, in: “Mesozoic Mammals,” Lillegraven, J.A., Kielan-Jaworowska, Z., Clemens, W.A. eds., University of California Press, Berkeley.

    Google Scholar 

  • Doyle, J.A. and L.J. Hickey, 1976, Pollen and leaves from the mid-Cretaceous Potomac Group and their bearing on early angiosperm evolution, in: “Origin and Early Evolution of Angiosperms,” C.B. Beck ed., Columbia Univ. Press. New York

    Google Scholar 

  • Fleagle, J.G., 1988, “Primate Adaptation and Evolution,” Academic Press, New York.

    Google Scholar 

  • Fleming, T.H., Breitwisch, R.L., and Whitesides, G.W., 1987, Patterns of tropical vertebrate frugivore diversity, Ann. Rev. Ecol. System 18:91–109.

    Article  Google Scholar 

  • Friis, E.M., Chaloner, W.G., and Crane, P.R., 1987, Introduction to the angiosperms, in: “The Origins of Angiosperms and Their Biological Consequences,” E. M. Friis, W.G. Chaloner, P.R. Crane, eds., Cambridge University Press. Cambridge

    Google Scholar 

  • Friis, E.M. and Crepet, W.L., 1987, Time of appearance of floral features, in: “The Origins of Angiosperms and Their Biological Consequences,” E.M. Friis, W.G. Chaloner, P.R. Crane, eds., Cambridge University Press, Cambridge.

    Google Scholar 

  • Garber, P.A. and Sussman, R.W., 1984, Ecological distinctions between sympatric species of Saguinus and Sciurus, Amer. Jour. of Physical Anthropology 65:135–146.

    Article  CAS  Google Scholar 

  • Gingerich, P. D., 1986, Plesiadapis and the delineation of the Order Primates, in: “Major Topics in Primate and Human Evolution,” B.A. Wood, L.B. Martin, P. Andrews, eds., Cambridge University Press, Cambridge.

    Google Scholar 

  • Howe, H.F., 1980, Monkey dispersal and waste of a neotropical fruit, Ecology 61:944–959.

    Article  Google Scholar 

  • Howe, H.F., 1989, Scatter- and clump-dispersal and seedling demography: hypothesis and implications, Oecologia 79:417–426.

    Article  Google Scholar 

  • Howe, H.F., Schupp, E.W., and Westley, L.C., 1985, Early consequences of seed dispersal for neotropical tree (Virola surinamensis), Ecology 66:781–791.

    Article  Google Scholar 

  • Herrera, C.M., 1984, Determinants of plant-animal coevolution: the case of mutualistic dispersal of seeds by vertebrates, OIKOS 44:132–144.

    Article  Google Scholar 

  • Hickey, L.J., 1981, Land plant evidence compatible with gradual, not catastrophic, change at the end of the Cretaceous, Nature 292:529–531.

    Article  Google Scholar 

  • Janzen, D.H., 1970, Herbivores and the number of tree species in tropical forests, Amer. Natur. 104:501–528.

    Article  Google Scholar 

  • Kay, R.F. and Cartmill, M., 1977, Cranial morphology and adaptations of Palaecthon nacimienti and other Parmomyidae (Plesiadapoidea, Primates), with a description of a new genus and species, J. of Hum. Evol. 6:19–53.

    Article  Google Scholar 

  • Kay, R.F., Thorington, R.W. and Houde P., 1990, Eocene plesiadapiform shows affinities with flying lemurs not primates, Nature 345:342–344.

    Article  Google Scholar 

  • Lillegraven, J.A., Kielan-Jaworowska, Z. and Clemens, W.A. (eds.), 1979, “Mesozoic Mammals,” Univ. California Press, Berkeley.

    Google Scholar 

  • Maas, M.C., Krause, D.W., and Strait, S.G., 1988, Decline and extinction of plesiadapiforms in North America: Displacement or replacement. Paleobiology, 14:410–431.

    Google Scholar 

  • MacPhee, R.D.E., Cartmill, M., and Gingerich, P.D., 1983, New Palaeogene primate basicrania and the definition of the order Primates. Nature 301:509–511.

    Article  PubMed  CAS  Google Scholar 

  • Martin, R.D., 1990, “Primate Origins and Evolution: A Phylogenetic Reconstruction,” Princeton University Press, Princeton.

    Google Scholar 

  • Martin, R.D., 1993, Primate origins: plugging the gaps. Nature 363:223–234.

    Article  PubMed  CAS  Google Scholar 

  • Niklas, K.J., Tiffney, B.H., and Knoll, A.H., 1980, Apparent changes in the diversity of fossil plants: a preliminary assessment, in: “Evolutionary Biology Vol. 12,” M.K. Hecht, W.C. Steere, B. Wallace, eds., Plenum, New York.

    Google Scholar 

  • Olson, S. L., 1985, The fossil record of birds, in: “Avion Biology, Vol. 3,” D. Farner, J. King and J.K. Parkes, eds., Academic Press, New York.

    Google Scholar 

  • Pettigrew, J.D., 1986, Flying primates? Megabats have tne advancea pathway from eye to midbrain, Science 231:1304–1306.

    Article  PubMed  CAS  Google Scholar 

  • Pettigrew, J.D., 1989, Phylogenetic relationships between microbats, megabats and primates (Mammalia: Chiroptera and Primates), Phil. Trans. Soc. London 325:489–559.

    Article  CAS  Google Scholar 

  • Pijl, L. van der, 1982, “Principles of Dispersal in Higher Plants,” Springer-Verlag, Berlin.

    Book  Google Scholar 

  • Rasmussen, D.T., 1990, Primate origins: lessons from a neotropical marsupial, Amer. J. Primatol. 22:263–277.

    Article  Google Scholar 

  • Silvertown, J.W., 1981, Seed size, life span, and germination adate as coadapted feature of plant life history, Am Naturalist 118:860–864.

    Article  Google Scholar 

  • Simpson, G.G., 1935, The Tiffany fauna, Upper Paleocene. 2. Structure and relationships of Plesiadapis, Am. Mus. Novit. 816:1–30.

    Google Scholar 

  • Sussman, R.W., 1991, Primate origins and the evolution of angiosperms. Am. J. Primatol. 23:209–223.

    Article  Google Scholar 

  • Sussman, R.W. and Raven P.H., 1978, Pollination by lemurs ana marsupials: an archaic coevolutionary system, Science 200:731–736.

    Article  PubMed  CAS  Google Scholar 

  • Stiles, E.W., 1989, Fruits, seeds, and dispersal agents, in: “Plant-Animal Interactions,” W.G. Abrahamson, ed., McgrawHill, New York.

    Google Scholar 

  • Szalav, F. S., 1968, The beginnings of primates, Evolution 22:19–36.

    Article  Google Scholar 

  • Szalay, F.S., 1969, Mixodectidae, Microsyopidae, ana tne insectivore- primate transition. Bull. Am. Mus. Nat. Hist. 140:193–330.

    Google Scholar 

  • Szalay, F.S. and Dagosto, M., 1980, Locomotor adaptations as reflected on the humerous of Paleogene primates, Folia Primatol. 34:1–45.

    Article  PubMed  CAS  Google Scholar 

  • Terborgh, J., 1986, Community aspects of frugivory in tropical forests, in: “Fruguvores and Seed Dispersal,” A. Estrada, T.H. Fleming, eds. Dr. W. Junk, Dordrecht.

    Google Scholar 

  • Thiele, A., Vogelsang, M., Hoffmann, K.-P., 1991, Retinonectal projection in the megachiropteran bat Rousettus aegyptiacus. J. Comp. Neurol. 314:671–683.

    Article  PubMed  CAS  Google Scholar 

  • Tiffney, B.H., 1981, Diversity and major events in the evolution of land plants, in: “Paleobotany, Paleoecology, and Evolution, Vol. 2,” K.J. Niklas, ed., Praeger, New York.

    Google Scholar 

  • Tiffney, B.H., 1984, Seed size, dispersal syndromes, and the rise of the angiosperms: evidence and hypothesis, Ann. Missouri Bot. Gard. 71:551–576.

    Article  Google Scholar 

  • Upchurch Jr., G.R. and Wolfe J.A., 1987, Mid-Cretaceous to Early Tertiary vegetation and climate: evidence from fossil leaves and woods, in: “The Origins of Angiosperms and Their Biological Consequences,” E.M. Friis, W.G. Chaloner and P.R. Crane, eds., Cambridge University Press, Cambridge.

    Google Scholar 

  • Wible, J.R. and Covert, H.H., 1987, Primates: Cladistic diagnosis and relationships, J. Hum. Evol. 16:1–22.

    Article  Google Scholar 

  • Wing, S. L. and Tiffney, B. H., 1987a, The reciprocal interaction or angiosperm evolution and tetrapod herbivory, Review of Paleobotany and Palynology 50:179–210.

    Article  Google Scholar 

  • Wing, S.L. and Tiffney, B.H., 1987b, Interactions of angiosperms and herbivorous tetrapods through time, in: “The Origins of Angiosperms and Their Biological Consequences,” E.M. Friis, W.G. Chaloner and P.R. Crane, eds., Cambridge University Press, Cambridge.

    Google Scholar 

  • Wolfe, J.A., 1975, Some aspects of plant geography of the northern hemisphere during the Late Cretaceous and Tertiary, Ann. Missouri Bot. Gard. 62:264–279.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Sussman, R.W. (1995). How Primates Invented the Rainforest and Vice Versa. In: Alterman, L., Doyle, G.A., Izard, M.K. (eds) Creatures of the Dark. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-2405-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-2405-9_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-3250-1

  • Online ISBN: 978-1-4757-2405-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics