Skip to main content

The Order Cytophagales

  • Chapter
The Prokaryotes

Abstract

In the past decade much has been learnt about the order Cytophagales and about some of the organisms belonging to it, although the majority of its members are as unfamiliar as ever. On the basis of 16S rRNA studies, we can now delimit the group with some confidence and have a well-founded idea of its phylogenetic position (Paster et al., 1985; Woese et al., 1985). Accordingly, the Cytophagales appear to be distantly related to the Bacteroides group, and these two together comprise one of the main branches, perhaps a phylum, in the bacterial phylogenetic system. The substructure of the Cytophaga branch of the phylum is more difficult to evaluate. There is a main line on which we find unicellular gliders—Cytophaga (Cy.*) johnsonae, Cy. lytica, Cy. aquatilis = Flavobacterium (Fv.) aquatile, and Sporocytophaga (Sp.) myxococcoides—but at a lower level unicellular nonmotile bacteria (Fv. breve, i.e., low GC, true flavobacteria) are also found. At a still lower level, a cluster branches off which comprises the unicellular gliders—Flexibacter (Fx.) filiformis = Fx. elegans Fx el, Cy. heparina, and Taxeobacter = Myx 2105), unicellular non-gliding flavobacteria (Fv. ferugineum), but also filamentous, multicellular, gliding (Saprospira) and nonmotile bacteria (Haliscomenobacter). It is obvious from these data that our present definition of genera does not reflect the phylogenetic situation, and also that the grouping in families and perhaps orders needs to be reconsidered. Before that is done, however, 16S rRNA sequences of further species should be determined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  • Aasen, A. J., and S. Liaaen Jensen. 1966a. The carotenoids of flexibacteria II. A new xanthophyll from Saprospira grandis. Acta Chem. Scand. 20: 811–819.

    CAS  Google Scholar 

  • Aasen, A. J., and S. Liaaen Jensen. 1966b. Carotenoids of flexibacteria III. The structures of flexixanthin and deoxyflexixanthin. Acta Chem. Scand. 20: 1970–1988.

    CAS  Google Scholar 

  • Aasen, A. J., and S. Liaaen Jensen. 1966c. Carotenoids of flexibacteria IV. The carotenoids of two further pigment types. Acta Chem. Scand. 20: 2322–2324.

    CAS  Google Scholar 

  • Abbanat, D. R., W. Godchaux, G. Polychroniou, and E. R. Leadbetter. 1985. Biosynthesis of a sulfonolipid in gliding bacteria. Biochem. Biophys. Res. Commun. 130: 873–878.

    PubMed  CAS  Google Scholar 

  • Abbanat, D. R., E. R. Leadbetter, W. Godchaux, and A. Escher. 1986. Sulphonolipids are molecular determinants of gliding motility. Nature 342: 367–369.

    Google Scholar 

  • Achenbach, H. 1987. The pigments of the flexirubin-type. A novel class of natural products. Fortschr. Chem. Org. Naturst. 52: 73–111.

    CAS  Google Scholar 

  • Achenbach, H., A. Böttger-Vetter, E. Fautz, and H. Reichenbach. 1982. On the origin of the branched alkyl substituents on ring B of flexirubin-type pigments. Arch. Microbiol. 132: 241–244.

    CAS  Google Scholar 

  • Achenbach, H., A. Böttger-Vetter, D. Hunkler, E. Fautz, and H. Reichenbach. 1983. Investigations on the biosynthesis of flexirubin-The origin of benzene ring B and its substituents. Tetrahedr. 39: 175–185.

    CAS  Google Scholar 

  • Achenbach, H., A. Böttger, W. Kohl, E. Fautz, and H. Reichenbach. 1979. Untersuchungen zur Biogenese des Flexirubins-Herkunft des Benzolringes A und der aromatischen C-Methylgruppen. Phytochem. 18: 961–963.

    CAS  Google Scholar 

  • Achenbach, H., W. Kohl, A. Böttger-Vetter, and H. Reichenbach. 1981. Untersuchungen der Pigmente aus Flavobacterium spec. Stamm C1/2. Tetrahedr. 37: 559–563.

    CAS  Google Scholar 

  • Achenbach, H., W. Kohl, and H. Reichenbach. 1976. Flexirubin, ein neuartiges Pigment aus Flexibacter elegans. Chem. Ber. 109: 2490–2502.

    CAS  Google Scholar 

  • Achenbach, H., W. Kohl, and H. Reichenbach. 1978. The flexirubin-type pigments-a novel class of natural pigments from gliding bacteria. Revista Latinoamericana de Quimica 9: 111–124.

    CAS  Google Scholar 

  • Achenbach, H., W. Kohl, and H. Reichenbach. 1979. Die Konstitutionen der Pigmente vom Flexirubin-Typ aus Cytophaga johnsonae Cy jl. Chem. Ber. 112: 1999–2011.

    CAS  Google Scholar 

  • Achenbach, H., W. Kohl, H. Reichenbach, and H. Kleinig. 1974. Zur Struktur des Flexirubins. Tetrahedr. Lett. 1974: 2555–2556.

    Google Scholar 

  • Achenbach, H., W. Kohl, W. Wachter, and H. Reichenbach. 1978b. Investigations of the pigments from Cytophaga johnsonae Cy jl. Arch. Microbiol. 117: 253–257.

    PubMed  CAS  Google Scholar 

  • Achenbach, H., and J. Witzke. 1977. Totalsynthese des Flex- irubin-dimethylethers. Angew. Chem. 89: 198–199.

    CAS  Google Scholar 

  • Adkins, A. M., and R. Knowles. 1984. Reduction of nitrous oxide by a soil Cytophaga in the presence of acetylene and sulfide. FEMS Microbiol. Lett. 23: 171–174.

    CAS  Google Scholar 

  • Adkins, A. M., and R. Knowles. 1986. Denitrification by Cytophaga johnsonae strains and by a gliding bacterium able to reduce nitrous oxide in the presence of acetylene and sulfide. Can. J. Microbiol. 32: 421–424.

    CAS  Google Scholar 

  • Agbo, J. A. C., and M. O. Moss. 1979. The isolation and characterization of agarolytic bacteria from a lowland river. J. Gen. Microbiol. 115: 355–368.

    Google Scholar 

  • Ajmal, M., and B. C. Hobbs. 1967. Causes and effect of columnaris-type diseases in fish. Nature 215: 141–142.

    PubMed  CAS  Google Scholar 

  • Alevy Y. G., and M. B. Compas. 1987. Induction of human immunoglobulin synthesis (IgG, IgA) by the novel, T cell independent mitogen Cytophaga allerginae endotoxin. Int. Arch. Allergy Appl. Immunol. 84: 79–84.

    PubMed  CAS  Google Scholar 

  • Amin, N. E., I. S. Abdallah, M. Faisal, M. El-S. Easa, T. Alaway, and S. A. Alyan. 1988. Columnaris infection among cultured Nile tilapia Oreochromis niloticus. An-tonie van Leeuwenhoek 54: 509–520.

    CAS  Google Scholar 

  • Anacker, R. L., and E. J. Ordal. 1955. Study of a bacteriophage infecting the myxobacterium Chondrococcus columnaris. J. Bacteriol. 70: 738–741.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Anacker, R. L., and E. J. Ordal. 1959. Studies on the myxobacterium Chondrococcus columnaris I. Serological typing. J. Bacteriol. 78: 25–32.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Anacker, R. L., and E. J. Ordal. 1959b. Studies on the myxobacterium Chondrococcus columnaris II. Bacteriocins. J. Bacteriol. 78: 33–40.

    CAS  Google Scholar 

  • Anderson, J. I. W., and D. A. Conroy. 1969. The pathogenic myxobacteria with special reference to fish diseases. J. Appl. Bacteriol. 32: 30–39.

    PubMed  CAS  Google Scholar 

  • Anderson, R. L., and E. J. Ordal. 1961a. Cytophaga succinicans sp. n., a facultatively anaerobic aquatic myxobacterium. J. Bacteriol. 81: 130–138.

    Google Scholar 

  • Anderson, R. L., and E. J. Ordal. 196lb. CO2-dependent fermentation of glucose of Cytophaga succinicans. J. Bacteriol. 81: 139–146.

    Google Scholar 

  • Arlet, G., M. J. Sanson-Le Pors, I. M. Casin, M. Ortenberg, and Y. Perol. 1987. In vitro susceptibility of 96 Capnocytophaga strains, including a ß-lactamase producer, to new 0-lactam antibiotics and six quinolones. Antimicrob. Agents Chemother. 31: 1283–1284.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Asselinearu, J., and F. Pichinoty. 1983. Lipid composition of strains of Flavobacterium and Sphingobacterium. FEMS Microbiol. Lett. 20: 375–378.

    Google Scholar 

  • Bachmann, B. J. 1955. Studies on Cytophaga fermentans, n. sp., a facultatively anaerobic lower myxobacterium. J. Gen. Microbiol. 13: 541–551.

    PubMed  CAS  Google Scholar 

  • Bacon, J. S. D., A. H. Gordon, D. Jones, I. E Taylor, and D. M. Webley. 1970. The separation of ß-glucanases produced by Cytophaga johnsonii and their role in the lysis of yeast cell walls. Biochem. J. 120: 67–78.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Baechler, C. A., and R. S. Berk. 1972. Ultrastructural observations of Pseudomonas aeruginosa: Rhapidosomes. Microstructures 3: 24–31.

    Google Scholar 

  • Baggi, G. 1985. Ricerche sulla degradazione di acidi dorobenzoici. Ann. Microbiol. 35: 71–78.

    CAS  Google Scholar 

  • Bauer, L. 1962. Untersuchungen an Sphaeromyxa xanthochlora, n. sp., einer auf Tropfkörpern vorkommenden Myxobakterienart. Arch. Hyg. Bakteriol. 146: 392–400.

    PubMed  CAS  Google Scholar 

  • Baxa, D. V., K. Kawai, and R. Kusuda. 1987a. Molecular taxonomic classification of gliding bacteria isolated from diseased cultured flounder. Fish Pathol. 22: 11–14.

    Google Scholar 

  • Baxa, D. V., K. Kawai, and R. Kusuda. 1987b. Experimental infection of Flexibacter maritimus in black sea bream (Acanthopagrus schlegeli) fry. Fish Pathol. 22: 105–109.

    Google Scholar 

  • Baxa, D. V., K. Kawai, and R. Kududa. 1988. Detection of Flexibacter maritimus by fluorescent antibody technique in experimentally infected black sea bream fry. Fish Pathol. 23: 29–32.

    Google Scholar 

  • Becker, C. D., and M. P. Fujihara. 1978. The bacterial pathogen Flexibacter columnaris and its epizootiology among Columbia River fish, monograph no. 2. American Fish. Society, Washington, DC.

    Google Scholar 

  • Behrens, H. 1978. Charakterisierung der DNA gleitender Bakterien der Ordnung Cytophagales. Doctoral thesis, Technical University Braunschweig, Germany

    Google Scholar 

  • Berg, B., B. V. Hofsten, and G. Pettersson. 1972. Electron-microscopic observations on the degradation of cellulose fibres by Cellvibrio fulvus and Sporocytophaga myxococcoides. J. Appl. Bacteriol. 35: 215–219.

    PubMed  CAS  Google Scholar 

  • Bernardet, J. F. 1989. Etude phénotypique et génomique des bactéries appartenant aux genres Cytophaga et Flexibacter (ordre des Cytophagales) et comparaison avec le genre Flavobacterium; application à l’identification et à la taxonomie des espèces ichthyopathogènes. Doctoral thesis, University of Paris V II.

    Google Scholar 

  • Bernardet, J. F., A. C. Campbell, and J. A. Buswell. 1990. Flexibacter maritimus is the agent of “black patch necrosis” in Dover sole in Scotland. Dis. Aquat. Org. 8: 233–237.

    Google Scholar 

  • Bernardet, J. F., and P. A. D. Grimont. 1989. Deoxyribonucleic acid relatedness and phenotypic characterization of Flexibacter columnaris sp. nov., nom. rev., Flexibacter psychrophilus sp. nov., nom. rev., and Flexibacter maritimus Wakabayashi, Hikida, and Masumura 1986. Int. J. Syst. Bacteriol. 39: 346–354.

    CAS  Google Scholar 

  • Bernardet, J. F, and B. Kerouault. 1989. Phenotypic and genomic studies of “Cytophaga psychrophila” isolated from diseased rainbow trout (Oncorhynchus mykiss) in France. Appl. Environm. Microbiol. 55: 1796–1800.

    CAS  Google Scholar 

  • Bhatnagar, R. D. S., and A. J. Musgrave. 1970. Cytochemistry, morphogenesis, and tentative identification of mycetomal microorganisms of Sitophilus granarius L. (Coleoptera). Can. J. Microbiol. 16: 1357–1362.

    PubMed  CAS  Google Scholar 

  • Bolton, R. W., and J. K. Dyer. 1986. Human complement activation by purified Capnocytophaga exopolysaccharide. Measurement by radioimmunoassay. J. Period. Res. 21: 634–639.

    CAS  Google Scholar 

  • Bootsma, R., and J. P. M. Clerx. 1976. Columnaris disease of cultured carp Cyprinus carpio L. Characterization of the causative agent. Aquacult. 7: 371–384.

    CAS  Google Scholar 

  • Bortels, H. 1956. Die Bedeutung einiger Spurenelemente für Cellvibrio-und Cytophaga-Arten. Arch. Mikrobiol. 25: 226–245.

    CAS  Google Scholar 

  • Bovallius, A. 1978. Increased extracellular production of a cholinesterase-solubilising factor by Cytophaga NCMB 1314 during magnesium starvation. Can. J. Microbiol. 24: 381–385.

    PubMed  CAS  Google Scholar 

  • Bovallius, A. 1979. Morphological and chemical characteristics of a Cytophaga sp. grown under conditions of magnesium excess and magnesium limitation. J. Gen. Microbiol. 113: 137–145.

    CAS  Google Scholar 

  • Brenner, D. J., D. G. Hollis, G. R. Fanning, and R. E. Weaver. 1989. Capnocytophaga canimorsus sp. nov. (formerly CDC group DF-2), a cause of septicemia following dog bite, and C. cynodegmi sp. nov., a cause of localized wound infection following dog bite. J. Clin. Microbiol. 27: 231–235.

    Google Scholar 

  • Brockman, E. R. 1967. Fruiting myxobacteria from the South Carolina coast. J. Bacteriol. 94: 1253–1254.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Brown, E. J., J. J. Pignatello, M. M. Martinson, and R. L. Crawford. 1986. Pentachlorophenol degradation: a pure bacterial culture and an epilithic microbial consortium. Appl. Environm. Microbiol. 52: 92–97.

    CAS  Google Scholar 

  • Bullock, G. L. 1972. Studies on selected myxobacteria pathogenic for fishes and on bacterial gill disease in hatchery-reared salmon, p. 1–30. In: Technical papers, Bureau of Sport Fisheries and Wildlife. U.S. Dept. Interior, Washington, DC.

    Google Scholar 

  • Burchard, R. P. 1984. Inhibition of Cytophaga U67 gliding motility by inhibitors of polypeptide synthesis. Arch. Microbiol. 139: 248–254.

    CAS  Google Scholar 

  • Burchard, R. P., and D. T. Brown. 1973. Surface structure of gliding bacteria after freeze-etching. J. Bacteriol. 114: 1351–1355.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Burlando, B., M. A. Sabatini, and E. Gaino. 1988. Association between calcareous Clathrina cerebum (Haeckel) and bacteria: electron microscope study. J. Exp. Mar. Biol. Ecol. 116: 35–42.

    Google Scholar 

  • Callies, E., and W. Mannheim. 1978. Classification of the Flavobacterium-Cytophaga complex on the basis of respiratory quinones and fumarate respiration. Int. J. Syst. Bacteriol. 28: 14–19.

    CAS  Google Scholar 

  • Campbell, A. C., and J. A. Buswell. 1982. An Investigation into the bacterial aetiology of “black patch necrosis” in Dover sole, Solea solea L. J. Fish Dis. 5: 495–508.

    Google Scholar 

  • Chang, L. Y. E., J. L. Pate, and R. J. Betzig. 1984. Isolation and characterization of nonspreading mutants of the gliding bacterium Cytophaga johnsonae. J. Bacteriol. 159: 26–35.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Chang, W. T. H., and D. W. Thayer. 1975. The growth of Cytophaga on mesquite. Developm. Industr. Microbiol. 16: 456–464.

    CAS  Google Scholar 

  • Chang, W. T. H., and D. W. Thayer. 1977. The cellulase system of a Cytophaga species. Can. J. Microbiol. 23: 1285–1292.

    PubMed  CAS  Google Scholar 

  • Charpentier, M. 1965. Étude de l’activité cellulolytique de Sporocytophaga myxococcoides. Ann. Inst. Pasteur 109: 771–797.

    CAS  Google Scholar 

  • Charpentier, M., and D. Robio. 1974. Dégradation de la cellulose par un microorganisme du sol: Sporocytophaga myxococcoides: Caractérisation d’une exoglucanase. C. R. Acad. Sc. Paris. 279: 863–866.

    CAS  Google Scholar 

  • Chen, C. R. L., H. Y. Chung, and G. H. Kou. 1982. Studies on the pathogenicity of Flexibacter columnaris-I. Effect of dissolved oxygen and ammonia on the pathogenicity, of Flexibacter columnaris to eel (Anguilla japonica). CAPD Fish. Series 8:1–7. Counc. Agricult. Plann. Devel., Rep. China, Taipei, Taiwan.

    Google Scholar 

  • Cho, Y., H. Shinano, and M. Akiba. 1984. Studies on the microbiological ecology of mackerel stored by the method of partial freezing-I. Changes in microflora and chemical compounds in mackerel stored by partial freezing. Bull. Faculty Fish. (Hokkaido Univ.) 35: 271–285.

    Google Scholar 

  • Chowdhury, B. R., and H. Wakabayashi. 1988. Effects of sodium, potassium, calcium and magnesium ions on Flexibacter columnaris infection in fish. Fish Pathol. 23: 237–241.

    CAS  Google Scholar 

  • Chowdhury, B. R., and H. Wakabayashi. 1989. A study on the mechanism of the bacterial competitive effects on Flexibacter columnaris infection: Effects of the time-lag between the exposures of fish to F. columnaris and its competitor. Fish Pathol. 24: 105–110.

    Google Scholar 

  • Christensen, P. J. 1973. Studies on soil and freshwater cytophagas. Ph.D. thesis, University of Alberta, Edmonton, Canada.

    Google Scholar 

  • Christensen, P. J. 1977a. The history biology, and taxonomy of the Cytophaga group. Can. J. Microbiol. 23: 1599–1653.

    PubMed  CAS  Google Scholar 

  • Christensen, P. J. 1977b. Synonomy of Flavobacterium pectinovorum Dorey with Cytophaga johnsonae Stanier. Int. J. Syst. Bacteriol. 27: 122–132.

    Google Scholar 

  • Christensen, P. J. 1980. Description and taxonomic status of Cytophaga heparina (Payza and Korn) comb. nov. (Basionym: Flavobacterium heparinum Payza and Korn 1956). Int. J. Syst. Bacteriol. 30: 473–475.

    CAS  Google Scholar 

  • Christensen, P. J., and E D. Cook. 1978. Lysobacter, a new genus of nonfruiting gliding bacteria with a high base ratio. Int. J. Syst. Bacteriol. 28: 367–393.

    Google Scholar 

  • Christison, J., and S. M. Martin. 1971. Isolation and preliminary characteristics of an extracellular protease of Cytophaga sp. Can. J. Microbiol. 17: 1207–1216.

    PubMed  CAS  Google Scholar 

  • Colgrove, D. J., and J. W. Wood. 1966. Occurrence and control of Chondrococcus columnaris as related to Fraser River sockeye salmon. Progress Report No. 15 of the International Pacific Salmon Fisheries Commission, New Westminster, British Columbia, Canada.

    Google Scholar 

  • Collins, M. D., H. N. Shah, A. S. McKee, and R. M. Kroppenstedt. 1982. Chemotaxonomy of the genus Capnocytophaga (Leadbetter, Holt & Socransky). J. Appl. Bacteriol. 52: 409–415.

    PubMed  CAS  Google Scholar 

  • Collins, V. G. 1970. Recent studies of bacterial pathogens of freshwater fish. Water Treatm. Exam. 19: 3–31.

    Google Scholar 

  • Cooper, R., K. Bush, P. A. Principe, W. H. Trejo, J. S. Wells, and R. B. Sykes. 1983. Two new antibiotics produced by a Flexibacter sp. I. Taxonomy, fermentation, isolation and biological properties. J. Antibiot. 36: 1252–1257.

    PubMed  CAS  Google Scholar 

  • Couke, P., and J. P. Voets. 1967. The mineral requirements of Polyangium cellulosum. Zschr. Allg. Mikrobiol. 7: 175–182.

    Google Scholar 

  • Cousin, M. A. 1982. Presence and activity of psychrotrophic microorganisms in milk and dairy products: a review. J. Food Protect. 45: 172–207.

    Google Scholar 

  • Crawford, R. L., and W. W. Mohn. 1985. Microbiological removal of pentachlorophenol from soil using a Flavobacterium. Enzyme Microb. Technol. 7: 617–620.

    CAS  Google Scholar 

  • Davis, H. S. 1921/1922. A new bacterial disease of fresh- water fishes. Bull. U. S. Bur. Fish. 38: 261–280.

    Google Scholar 

  • Davis, H. S. 1949. Cytophaga columnaris as a cause of fish epidemics. Transact. Am. Fish. Soc. 77: 102–104.

    Google Scholar 

  • Dawson, R. M. C., W. H. Elliott, and K. M. Jones: (ed.) 1969. Data for biochemical research, 2nd ed. Clarendon Press, Oxford.

    Google Scholar 

  • Dees, S. B., C. W. Moss, R. E. Weaver, and D. Hollis. 1979. Cellular fatty acid composition of Pseudomonas paucimobilis and groups IIk-2, Ve-1, and Ve-2. J. Clin. Microbiol. 10: 206–209.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Deufel, J. 1974. Wirkung von Mefarol auf Fische and den Erreger der bakteriellen Kiemenschwellung. Der Fischwirt. 24: 27–29.

    Google Scholar 

  • Dhundale, A. R., T. Furuichi, S. Inouye, and M. Inouye. 1985. Distribution of multicopy single-stranded DNA among myxobacteria and related species. J. Bacteriol. 164: 914–917.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Dietrich, C. P. 1969. Enzymatic degradation of heparin. Biochem. J. 111: 91–95.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Donderski, W. 1982. Studies on pectolytic bacteria in water and bottom sediments of two lakes of different trophy. Acta Microbiol. Pol. 31: 293–299.

    CAS  Google Scholar 

  • Donderski, W. 1983. Chitinolytic bacteria in water and bottom sediments of two lakes of different trophy. Acta Microbiol. Pol. 33: 163–170.

    Google Scholar 

  • Dorey, M. J. 1959. Some properties of a pectolytic soil flavobacterium. J. Gen. Microbiol. 20: 91–104.

    PubMed  CAS  Google Scholar 

  • Dubos, R. 1928. The decomposition of cellulose by aerobic bacteria. J. Bacteriol. 15: 223–234.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Duckworth, M., and J. R. Turvey. 1969a. An extracellular agarase from a Cytophaga species. Biochem. J. 113: 139–142.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Dungan, C. E, R. A. Elston, and M. H. Schiewe. 1989. Evidence for colonization and destruction of hinge ligaments in cultured juvenile Pacific oysters (Crassostrea gigas) by Cytophaga-like bacteria. Appl. Environm. Microbiol. 55: 1128–1135.

    CAS  Google Scholar 

  • Duxbury, T., B. A. Humphrey, and K. C. Marshall. 1980. Continuous observations of bacterial gliding motility in a dialysis microchamber: The effects of inhibitors. Arch. Microbiol. 124: 169–175.

    CAS  Google Scholar 

  • Fâhraeus, G. 1947. Studies on the cellulose decomposition by Cytophaga. Symbolae Botanicae Upsalienses 9(2): 1128.

    Google Scholar 

  • Farkas, J., and J. Olâh. 1984. Occurrence, experimental infection and treatment of myxobacterial gill disease of carp. Symp. Biol. Hungarica (Budapest) 23: 55–61.

    Google Scholar 

  • Fautz, E., L. Grotjahn, and H. Reichenbach. 1981. Hydroxy fatty acids as valuable chemosystematic markers in gliding bacteria and flavobacteria, p. 127–133. In: H. Reichenbach and O. B. Weeks (ed.), the Flavobacterium-Cytophaga group. Verlag Chemie, Weinheim, Germany.

    Google Scholar 

  • Fautz, E., and H. Reichenbach. 1980. A simple test for flexirubin-type pigments. FEMS Microbiol. Lett. 8: 87–91.

    CAS  Google Scholar 

  • Fautz, E., G. Rosenfelder, and L. Grotjahn. 1979. Isobranched 2- and 3-hydroxy fatty acids as characteristic lipid constituents of some gliding bacteria. J. Bacteriol. 140: 852–858.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Fijan, N. N. 1969. Antibiotic additives for the isolation of Chondrococcus columnaris from fish. Appl. Microbiol. 17: 333–334.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Fijan, N. N., and P. R. Voorhees. 1969. Drug sensitivity of Chondrococcus columnaris. Veterinarski Arhiv (Zagreb) 39: 259–267.

    CAS  Google Scholar 

  • Flaherty, D. K., E H. Deck, M. A. Hood, C. Liebert, F. Singleton, P. Winzenburger, K. Bishop, L. R. Smith, L. M. Bynum, and W. B. Witmer. 1984. A Cytophaga species endotoxin as a putative agent of occupation-related lung disease. Infect. Immun. 43: 213–216.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Follett, E. A. C., and D. M. Webley. 1965. An electron microscope study of the cell surface of Cytophaga johnsonii and some observations on related organisms. An-tonie van Leeuwenhoek 31: 361–382.

    CAS  Google Scholar 

  • Forlenza, S., and M. G. Newman. 1983. Capnocytophaga, p. 45–66. In: E. J. Bottone (ed.), Unusual microorganisms. Marcel Dekker, New York.

    Google Scholar 

  • Forlenza, S. W., M. G. Newman, A. L. Horikoshi, and U. Blachman. 1981. Antimicrobial susceptibility of Capnocytophaga. Antimicrob. Agents Chemother. 19: 144–146.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Forlenza, S. W., M. G. Newman, A. I. Lipsey, S. E. Siegel, and U. Blachman. 1980. Capnocytophaga sepsis: a newly recognized clinical entity in granulocytopenic patients. Lancet 1980: 567–568.

    Google Scholar 

  • Fox., D.L., and R. A. Lewin. 1963. A preliminary study of the carotenoids of some flexibacteria. Can. J. Microbiol. 9: 753–768.

    Google Scholar 

  • Fujihara, M. P., and F. P. Hungate 1972. Seasonal distribution of Chondrococcus columnaris infection in river fishes as determined by specific agglutinins. J. Fish. Res. Bd. Can. 29: 173–178.

    Google Scholar 

  • Fujihara, M. P., P. A. Olson, and R. E. Nakatani. 1971. Some factors in susceptibility of juvenile rainbow trout and chinook salmon to Chondrococcus columnaris. J. Fish. Res. Bd. Can. 28: 1739–1743.

    Google Scholar 

  • Fumarola, D., R. D. Laforgia, R. Monno, G. Miragliotta, and F Mangini. 1981. Endotoxin-like activity with Capnocytophaga gingivalis. IRCS Medical Sci. 9: 720.

    Google Scholar 

  • Garnjobst, L. 1945. Cytophaga columnaris (Davis) in pure culture: a myxobacterium pathogenic to fish. J. Bacteriol. 49: 113–128.

    Google Scholar 

  • Gennari, M., and S. Tomaselli. 1988. Changes in aerobic microflora of skin and gills of Mediterranean sardines (Sardinia pilchardus) during storage in ice. Int. J. Food Microbiol. 6: 341–347.

    PubMed  CAS  Google Scholar 

  • Ghittion, P. 1972. Mortalità massiva per Malattia Branchiale Batterica (MBB) in cieche di anguilla europea (Anguilla anguilla). Riv. Ital. Piscic. Ittiop. 7: 83–85.

    Google Scholar 

  • Glaser, J., and J. L. Pate. 1973. Isolation and characterization of gliding motility mutants of Cytophaga columnaris. Arch. Mikrobiol. 93: 295–309.

    PubMed  CAS  Google Scholar 

  • Godchaux, W., and E. R. Leadbetter. 1980. Capnocytophaga spp. contain sulfonolipids that are novel in prokaryotes. J. Bacteriol. 144: 592–602.

    Google Scholar 

  • Godchaux, W., and E. R. Leadbetter. 1983. Unusual sulfonolipids are characteristic of the Cytophaga-Flexibacter group. J. Bacteriol. 153: 1238–1246.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Godchaux, W., and E. R. Leadbetter. 1984. Sulfonolipids of gliding bacteria. Structure of the N-acylaminosulfonates. J. Biol. Chem. 259: 2982–2990.

    PubMed  CAS  Google Scholar 

  • Godchaux, W., and E. R. Leadbetter. 1988. Sulfonolipids are localized in the outer membrane of the gliding bacterium Cytophaga johnsonae. Arch. Microbiol. 150: 4247.

    Google Scholar 

  • Godden, G., and M. J. Penninckx. 1984. Identification and evolution of the cellulolytic microflora present during composting of cattle manure: On the role of actinomycetes sp. Ann. Microbiol. (Inst. Pasteur) 135B: 6978.

    Google Scholar 

  • Godwin, S. L., M. Fletcher, and R. R. Burchard. 1989. Interference reflection microscopic study of sites of association between gliding bacteria and glass substrata. J. Bacteriol. 171: 4589–4595.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Gräf, W. 1961. Anaerobe Myxobakterien, neue Mikroben in der menschlichen Mundhöhle. Arch. Hyg. Bakteriol. 145: 405–459.

    Google Scholar 

  • Gräf, W. 1962a. Über Wassermyxobakterien. Arch. Hyg. Bakteriol. 146: 114–125.

    Google Scholar 

  • Gräf, W. t962b. Die zytopahtogenen Eigenschaften der anaeroben Myxobakterien. Arch. Hyg. Bakteriol. 146: 481–491.

    Google Scholar 

  • Graf, W. 1962c. Die Pathogenität anaerober Myxobakterien (Sphaerocytophaga) im Tierversuch. Arch. Hyg. Bakteriol. 146: 492–500.

    Google Scholar 

  • Gräf, W., and H. Morhard. 1966. Antibiotikaempfindlichkeit von anaeroben Myxobakterien. Arch. Hyg. Bakteriol. 150: 135–139.

    PubMed  Google Scholar 

  • Greaves, M. R, D. Vaughan, and D. M. Webley. 1970. The degradation of nucleic acids by Cytophaga johnsonii. J. Appl. Bacteriol. 33: 380–389.

    PubMed  CAS  Google Scholar 

  • Guamis, B., T. Huerta, and E. Garay. 1987. SDS-PAGE study of milk proteolysis by selected psychrotrophs from raw milk. Milchwissensch. 42: 89–91.

    CAS  Google Scholar 

  • Glide, H. 1973. Untersuchungen über aerobe pektinzersetzende Bakterien in einem eutrophen See. Arch. Hydrobiol., Suppl. 42: 483–496.

    Google Scholar 

  • Gilde, H. 1980. Occurrence of cytophagas in sewage plants. Appl. Environm. Microbiol. 39: 756–763.

    Google Scholar 

  • Hansen, G. H., and J. A. Olafsen. 1989. Bacterial colonization of cod (Gadus morhua L.) and halibut (Hippoglossus hippoglossus) eggs in marine aquaculture. Appl. Environm. Microbiol. 55: 1435–1446.

    CAS  Google Scholar 

  • Hanson, L. A., and J. M. Grizzle. 1985. Nitrite-induced predisposition of channel catfish to bacterial diseases. Progr. Fish-Cult. 47: 98–101.

    CAS  Google Scholar 

  • Hanstveit, A. O., and J. Gokseyr. 1974. The pathway of glucose catabolism in Sporocytophaga myxococcoides. J. Gen. Microbiol. 81: 27–35.

    Google Scholar 

  • Hawkey, R. M., H. Malnick, S. Glover, N. Cook, and J. A. Watts. 1984. Capnocytophaga ochracea infection: two cases and a review of the published work. J. Clin. Pathol. 37: 1066–1070.

    Google Scholar 

  • Hayes, R. R. 1977. A taxonomic study of flavobacteria and related Gram-negative yellow pigmented rods. J. Appl. Bacteriol. 3: 345–367.

    Google Scholar 

  • Heo, G. J., H. Wakabayashi, and S. Watabe. 1990. Purification and characterization of pili from Flavobacterium branchiophila. Fish Pathol. 25: 21–27.

    Google Scholar 

  • Heyn, A. N. J. 1957. Bacteriological studies on cotton. Textile Res. J. 27: 591–603.

    Google Scholar 

  • Hida, T., S. Tsubotani, N. Katayama, H. Okazaki, and S. Harada. 1985. Formadicins, new monocyclic 0-lactam antibiotics of bacterial origin II. Isolation, characterization and structures. J. Antibiot. 38: 1128–1140.

    PubMed  CAS  Google Scholar 

  • Hikida, M., H. Wakabayashi, S. Egusa, and K. Masumura. 1979. Flexibacter sp., a gliding bacterium pathogenic to some marine fishes in Japan. Bull. Jap. Soc. Sci. Fish. 45: 421–428.

    Google Scholar 

  • Hirsch, I. 1979. Beiträge zur Taxonomie der Cytophagales. Ph.D. thesis, Technical University Braunschweig, Germany.

    Google Scholar 

  • Hoeniger, J. F. M. 1985. Microbial decomposition of cellulose in acidifying lakes of south-central Ontario. Appl. Environm. Microbiol. 50: 315–322.

    CAS  Google Scholar 

  • Höfle, M. G. 1982. Glucose uptake of Cytophaga johnsonae studied in batch and chemostat culture. Arch. Microbiol. 133: 289–294.

    Google Scholar 

  • Höfle, M. G. 1983. Long-term changes in chemostat cultures of Cytophaga johnsonae. Appl. Environm. Microbiol. 46: 1045–1053.

    Google Scholar 

  • Höfle, M. G. 1984. Transient responses of glucose-limited cultures of Cytophaga johnsonae to nutrient excess and starvation. Appl. Environm. Microbiol. 47: 356–362.

    Google Scholar 

  • Holm-Hansen, O., and R. A. Lewin. 1965. Bound ornithine in certain flexibacteria and algae. Physiol. Plant. 18: 418–423.

    Google Scholar 

  • Holm-Hansen, O., R. Prasad, and R. A. Lewin. 1965. Occurrence of a-, e-diaminopimelic acid in algae and flexibacteria. Phycologia 5: 1–14.

    CAS  Google Scholar 

  • Holt, S. C., J. Doundowlakis, and B. J. Takas. 1979a. Phospholipid composition of gliding bacteria: Oral isolates of Capnocytophaga compared with Sporocytophaga. Infect. Immun. 26: 305–310.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Holt, S. C., G. Forcier, and B. J. Takacs. 1979b. Fatty acid composition of gliding bacteria: Oral isolates of Capnocytophaga compared with Sporocytophaga. Infect. Immunity 26: 298–304.

    CAS  Google Scholar 

  • Holt, S. C., and E. R. Leadbetter. 1967. Fine structure of Sporocytophaga myxococcoides. Arch. Mikrobiol. 57: 199–213.

    PubMed  CAS  Google Scholar 

  • Holt, S. C., E. R. Leadbetter, and S. S. Socransky. 1979c. Capnocytophaga: new genus of Gram-negative gliding bacteria. II. Morphology and ultrastructure. Arch. Microbiol. 120: 231–238.

    Google Scholar 

  • Humphrey, B. A., and K. C. Marshall. 1980. Fragmentation of some gliding bacteria during the growth cycle. J. Appl. Bacteriol. 49: 281–289.

    Google Scholar 

  • Hutchinson, H. B., and J. Clayton. 1919. On the decomposition of cellulose by an aerobic organism (Spirochaeta cytophaga nov. sp.). J. Agricult. Sci. 9: 143–173.

    CAS  Google Scholar 

  • lizuka, T., K. Fujikawa, K. Ito, and S. Murai. 1987. The phospholipid components of bacteria related to periodontitis. J. Nihon Univ. Sch. Dent. 29: 189–195.

    Google Scholar 

  • Imschenezki, A. A. (also: Imshenetski). 1959. Mikrobiologie der Cellulose. Akademie Verlag, Berlin. [Translated from the Russian edition of 1953.]

    Google Scholar 

  • Imshenetski, A. A., and L. Solntseva. 1936. On aerobic cellulose-decomposing bacteria. [In Russian, with English summary.] Izvestiia Akademii Nauk SSSR. Bulletin de l’Académie des Sciences de l’URSS. Classe des Sciences Mathématique et Naturelles. Série Biologie: 1115–1172.

    Google Scholar 

  • Irschik, H., and H. Reichenbach. 1978. Intracellular location of flexirubins in Flexibacter elegans (Cytophagales). Biochim. Biophys. Acta 510: 1–10.

    PubMed  CAS  Google Scholar 

  • Johns., R. B., and G. J. Perry. 1977. Lipids of the marine bacterium Flexibacter polymorphus. Arch. Microbiol. 114: 267–271.

    Google Scholar 

  • Johnson, J. L., and W. S. Chilton. 1966. Galactosamine glycan of Chondrococcus columnaris. Science 152: 1247–1248.

    PubMed  CAS  Google Scholar 

  • Jooste, P. J. 1985. The taxonomy and significance of Flavobacterium-Cytophaga strains from dairy sources. Doctoral thesis, University of Bloemfontein, RSA.

    Google Scholar 

  • Jooste, P. J., T. J. Britz, and J. de Haast. 1985. A numerical taxonomic study of Flavobacterium-Cytophaga strains from dairy sources. J. Appt. Bacteriol. 59: 311–323.

    CAS  Google Scholar 

  • Joubert, J. J., and M. J. Pitout. 1985. A constitutive heparinase in a Flavobacterium sp. Experientia 41: 1541.

    CAS  Google Scholar 

  • Kadota, H. 1956. A study of the marine aerobic cellulose-decomposing bacteria. Memoirs of the College of Agriculture, Kyoto University, no. 74: 1–128.

    Google Scholar 

  • Kagermeier, A., and J. London. 1986. Identification and preliminary characterization of a lectinlike protein from Capnocytophaga gingivalis (emended). Infect. Immun. 51: 490–494.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Kapke, P. A., A. T. Brown, and T. T. Lillich. 1980. Carbon dioxide metabolism by Capnocytophaga ochracea: Identification, characterization, and regulation of phosphoenolpyruvate carboxykinase. Infect. Immun. 27: 756–766.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Katayama, N., Y. Nozaki, K. Okonogi, H. Ono, S. Harada, and H. Okazaki. 1985. Formadicins, new monocyclic ß-lactam antibiotics of bacterial origin I. Taxonomy, fermentation and biological activities. J. Antibiot. 38: 1117–1127.

    PubMed  CAS  Google Scholar 

  • Kath, T. K. L. 1990. Untersuchungen zur natürlichen Verwandtschaft cellulosezersetzender Cytophaga-artiger Bakterien. Doctoral thesis, Technical University, Braunschweig, Germany.

    Google Scholar 

  • Kato, T., H. Hinoo, J. Shoji, K. Matsumoto, T. Tanimoto, T. Hattori, K. Hirooka, and E. Kondo. 1987. PB-5266 A, B and C, new monobactams. I. Taxonomy, fermentation and isolation. J. Antibiot. 40: 135–138.

    PubMed  CAS  Google Scholar 

  • Kato, T., H. Hinoo, Y. Terui, J. Kikuchi, and J. Shoji. 1.988. The structures of katanosins A and B. J. Antibiot. 41: 719–725.

    Google Scholar 

  • Kato, T., H. Hinoo, Y. Terui, J. Nishikawa, Y. Nakagawa, Y. Ikenishi, and J. Shoji. 1987. PB-5266 A, B and C, new monobactams II. Physico-chemical properties and chemical structures. J. Antibiot. 40: 139–144.

    PubMed  CAS  Google Scholar 

  • Kauri, T., and D. J. Kushner. 1985. Role of contact in bacterial degradation of cellulose. FEMS Microbiol. Ecol. 31: 301–306.

    Google Scholar 

  • Kawata, S., T. Takemura, K. Yokogawa, and S. Kotani. 1984. Isolation of bacteriolytic endopeptidase from a strain of Cytophaga and its application to preparation of hydrosoluble polysaccharide peptide from Staphylococcus epidermidis peptidoglycan. Agric. Biol. Chem. 48: 2253–2263.

    CAS  Google Scholar 

  • Kent, M. L., C. R Dungan, R. A. Elston, and R. A. Holt. 1988. Cytophaga sp. (Cytophagales) infection in seawater pen-reared Atlantic salmon Salmo salar. Dis. Aquat. Org. 4: 173–179.

    Google Scholar 

  • Kincheloe, J. W. 1962. The cultivation and drug sensitivity of myxobacteria isolated from diseased fish. The Progressive Fish-Culturist 24: 119–126.

    Google Scholar 

  • Kingsbury, D. T., and E. J. Ordal. 1966. Bacteriophage infecting the myxobacterium Chondrococcus columnaris. J. Bacteriol. 91: 1327–1332.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Kleinig, H., H. Reichenbach, N. Theobald, and H. Achenbach. 1974. Flexibacter elegans and Myxococcus fulvus: aerobic Gram-negative bacteria containing menaquinones as the only isoprenoid quinones. Arch. Microbiol. 101: 91–93.

    Google Scholar 

  • Kohl, W., H. Achenbach, and H. Reichenbach. 1983. The pigments of Brevibacterium linens: Aromatic carotenoids. Phytochem. 22: 207–210.

    CAS  Google Scholar 

  • Krzemieniewska, H. 1930. Le cycle évolutif de Spirochaeta cytophaga Hutchinson et Clayton. Acta Soc. Botan. Po-Ion. 7: 507–519.

    Google Scholar 

  • Krzemienieqska, H. 1933. Contribution à l’étude du genre Cytophaga (Winogradsky). Arch. Mikrobiol. 4: 394–408.

    Google Scholar 

  • Kuhrt, M., and J. L. Pate. 1973. Isolation and characterization of tubules and plasma membranes from Cytophaga columnaris. J. Bacteriol. 114: 1309–1318.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Kuo, S. C., H. Y. Chung, and G. H. Kou. 1980. Studies on identification and pathogenicity of the gliding bacteria in cultured fishes. CAPD Fish. Series 3:53–66. Counc. Agricult. Plann. Devel., Rep. China, Taipei, Taiwan.

    Google Scholar 

  • Kuo, S. C., H. Y. Chung, and G. H. Kou. 1981. Studies on artificial infection of the gliding bacteria in cultured fishes. Fish Pathol. 15: 309–314.

    Google Scholar 

  • Kurowski, W. M., and J. A. Dunleavy. 1976. Pectinase production by bacteria associated with improved preservative permeability in sitka spruce: synthesis and secretion of polygalacturonate lyase by Cytophaga johnsonii. J. Appl. Bacteriol. 41: 119–128.

    CAS  Google Scholar 

  • Kusuda, R., and H. Kimura. 1982. Characteristics of gliding bacterium isolated from cultured yellowtail Seriola guinqueradiata. Bull. Japan. Soc. Sci. Fish. 48: 1107–1112.

    Google Scholar 

  • Lapidus, I. R., and H. C. Berg. 1982. Gliding motility of Cytophaga sp. strain U67. J. Bacteriol. 151: 384–398.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Leadbetter, E. R. 1974. Cytophagales, p. 99–112. In R. E. Buchanan and N. E. Gibbons (ed.), Bergey’s manual of determinative bacteriology, 8th ed. Williams & Wilkins, Baltimore.

    Google Scholar 

  • Leadbetter, E. R., S. C. Holt, and S. S. Socransky. 1979. Capnocytophaga: New genus of Gram-negative gliding bacteria. I. General characteristics, taxonomic considerations and significance. Arch. Microbiol. 122: 9–16.

    Google Scholar 

  • Lewin, R. A. 1969. A classification of flexibacteria. J. Gen. Microbiol. 58: 189–206.

    PubMed  CAS  Google Scholar 

  • Lewin, R. A. 1970. Flexithrix dorotheae gen. et sp. nov. (Flexibacterales); and suggestions for reclassifying sheathed bacteria. Can. J. Microbiol. 16: 5411–515.

    Google Scholar 

  • Lewin, R. A., and D. M. Lounsbery. 1969. Isolation, cultivation and characterization of flexibacteria. J. Gen. Microbiol. 58: 145–170.

    PubMed  CAS  Google Scholar 

  • Liao, C. H. 1989. Analysis of pectate lyases produced by soft rot bacteria associated with spoilage of vegetables. Appl. Environm. Microbiol. 55: 1677–1683.

    CAS  Google Scholar 

  • Liao, C. H., and J. M. Wells. 1986. Properties of Cytophaga johnsonae strains causing spoilage of fresh produce at food markets. Appl. Environm. Microbiol. 52: 1261–1265.

    CAS  Google Scholar 

  • Liebert, C., M. A. Hood, F. H. Deck, K. Bishop, and D. K. Flaherty. 1984. Isolation and characterization of a new Cytophaga species implicated in work-related lung disease. Appl. Environm. Microbiol. 48: 936–943.

    CAS  Google Scholar 

  • Liewes, E. W., R. H. van Dam, M. G. Vos-Maas, and R. Bootsma. 1982. Presence of antigen sensitized leukocytes in carp (Cyprinus carpio L.) following bath immunization against Flexibacter columnaris. Vet. Immunol. Immunopathol. 3: 603–609.

    PubMed  CAS  Google Scholar 

  • Liston, J. 1960. The bacterial flora of fish caught in the Pacific. J. Appl. Bacteriol. 23: 469–470.

    Google Scholar 

  • London, J., R. Celesk, and P. Kolenbrander. 1982. Physiological and ecological properties of the oral Gram-negative gliding bacteria capable of attaching to hydroxyapatite, p. 76–85. In: R. F. Genco and S. E. Mergenhagen (ed.), Host-parasite interactions in periodontal disease. Am. Soc. Microbiol., Washington, DC.

    Google Scholar 

  • Lund, B. M. 1969. Properties of some pectolytic, yellow pigmented, Gram-negative bacteria isolated from fresh cauliflowers. J. Appl. Bacteriol. 32: 60–67.

    PubMed  CAS  Google Scholar 

  • Lundin, S. J. 1968. A bacterial factor capable of solubilizing cholinesterase from plaice body muscle. Acta Chem. Scand. 22: 2519–2528.

    CAS  Google Scholar 

  • Lundin, S. J., and A. Bovallius. 1966. The solubilization of a cholinesterase from plaice muscle by bacteria. Acta Chem. Scand. 20: 395–402.

    CAS  Google Scholar 

  • Mandel, M., and E. R. Leadbetter. 1965. Deoxyribonucleic acid base composition of myxobacteria. J. Bacteriol. 90: 1795–1796.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Mandel, M., and R. A. Lewin. 1969. Deoxyribonucleic acid base composition of flexibacteria. J. Gen. Microbiol. 58: 171–178.

    PubMed  CAS  Google Scholar 

  • Martin, H. H., H. J. Preusser, and J. P. Verma. 1968. Über die Oberflächenstruktur von Myxobakterien II. Anionische Heteropolysaccharide als Baustoffe der Schleimhülle von Cytophaga hutchinsonii und Sporocytophaga myxococcoides. Arch. Mikrobiol. 62: 72–84.

    PubMed  CAS  Google Scholar 

  • Martin, S. M., and V. So. 1969. Solubilization of autoclaved feathers and wool by myxobacteria. Can. J. Microbiol. 15: 1393–1397.

    PubMed  CAS  Google Scholar 

  • Mayer, H., and H. Reichenbach. 1978. Restriction endonucleases: General survey procedure and survey of gliding bacteria. J. Bacteriol. 136: 708–713.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Mehra, I. J., G. M. Warke, and S. A. Dhala. 1967. Effect of zinc salts on Cytophaga spp. Ind. J. Microbiol. 7: 75–78.

    CAS  Google Scholar 

  • Moss, C. W., and S. B. Dees. 1978. Cellular fatty acids of Flavobacterium meningosepticum and Flavobacterium species group IIb. J. Clin. Microbiol. 8: 772–774.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Mulbry, W. W., J. S. Karns, P. C. Kearney, J. O. Nelson, C. S. McDaniel, and J. R. Wild. 1986. Identification of a plasmid-borne parathion hydrolase gene from Flavobacterium sp. by Southern hybridization with opd from Pseudomonas diminuta. Appl. Environm. Microbiol. 51: 926–930.

    CAS  Google Scholar 

  • Murayama, Y., K. Muranishi, H. Okada, K. Kato, S. Kotani, H. Takada, M. Tsujimoto, A. Kawasaki, and T. Ogawa. 1982. Immunological activities of Capnocytophaga cellular components. Infect. Immun. 36: 876–884.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Nakamura, M., and J. Slots. 1982. Aminopeptidase activity of Capnocytophaga. J. Periodont. Res. 17: 597–603.

    PubMed  CAS  Google Scholar 

  • Negoro, S., and H. Okada. 1982. Physical map of nylon oligomer degradative plasmid pOAD2 harbored in Flavobacterium sp. KI72. Agric. Biol. Chem. 46: 745–750.

    CAS  Google Scholar 

  • Newman, M. G., S. S. Socransky, E. D. Savitt, D. A. Propas, and A. Crawford. 1976. Studies of the microbiology of periodontosis. J. Periodontol. 47: 373–379.

    PubMed  CAS  Google Scholar 

  • Ordal, E. J., and R. R. Rucker. 1944. Pathogenic myxobacteria. Proc. Soc. Exptl. Biol. Med. 56: 15–18.

    Google Scholar 

  • Osmundsväg, K., and J. Gokseyr. 1975. Cellulases from Sporocytophaga myxococcoides. Eur. J. Biochem. 57: 405–409.

    PubMed  Google Scholar 

  • Ostland, V. E., H. W. Ferguson, and R. M. W. Stevenson. 1989. Case report: bacterial gill disease in goldfish Carassias auratus. Dis. Aquat. Org. 6: 179–184.

    Google Scholar 

  • Owen, R. J., and J. J. S. Snell. 1976. Deoxyribonucleic acid reassociation in the classification of flavobacteria. J. Gen. Microbiol. 93: 89–102.

    PubMed  CAS  Google Scholar 

  • Oyaizu, H., and K. Komagata. 1981. Chemotaxonomic and phenotypic characterization of the strains of species in the Flavobacterium-Cytophaga complex. J. Gen. Appl. Microbiol. 27: 57–107.

    CAS  Google Scholar 

  • Oyaizu, H., K. Komagata, A. Amemura, and T. Harada. 1982. A succinoglycan-decomposing bacterium, Cytophaga arvensicola sp. nov. J. Gen. Appl. Microbiol. 28: 369–388.

    CAS  Google Scholar 

  • Pacha, R. E. 168. Characteristics of Cytophaga psychrophila (Borg) isolated during outbreaks of bacterial cold-water disease. Appl. Microbiol. 16: 97–101.

    Google Scholar 

  • Pacha, R. E., and E. J. Ordal. 1967. Histopathology of experimental columnaris disease in young salmon. J. Comparative Pathol. 77: 419–423.

    CAS  Google Scholar 

  • Pacha, R. E., and E. J. Ordal. 1970. Myxobacterial diseases of salmonids, p. 243–257. In: S. F. Snieszko (ed.), A symposium on diseases of fishes and shellfishes. Am. Fish. Soc., Special Publ. no. 5, Washington, DC.

    Google Scholar 

  • Pacha, R. E., and S. Porter. 1968. Characteristics of myxobacteria isolated from the surface of freshwater fish. Appl. Microbiol. 16: 1901–1906.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Paerregaard, A., and E. Gutschick. 1987. Capnocytophaga bacteremia complicating premature delivery by cesarean section. Eur. J. Clin. Microbiol. 6: 580–581.

    Google Scholar 

  • Paster, B. J., W. Ludwig, W. G. Weisburg, E. Stackebrandt, R. B. Hespell, C. M. Hahn, H. Reichenbach, K. O. Stetter, and C. R. Woese. 1985. A phylogenetic grouping of the bacteroides, cytophagas, and certain flavobacteria. System. Appl. Microbiol. 6: 34–42.

    CAS  Google Scholar 

  • Pate, J. L. 1985. Gliding motility in Cytophaga. Microbiol. Sciences 2: 289–295.

    CAS  Google Scholar 

  • Pate, J. L., and L. Y. E. Chang. 1979. Evidence that gliding motility in prokaryotic cells is driven by rotary assemblies in the cell envelopes. Current Microbiol. 2: 59–64.

    Google Scholar 

  • Pate, J. L., J. L. Johnson, and E. J. Ordal. 1967. The fine structure of Chondrococcus columnaris II. Structure and formation of rhapidosomes. J. Cell Biol. 35: 15–35.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Pate, J. L., and E. J. Ordal. 1967a. The fine structure of Chondrococcus columnaris I. Structure and formation of mesosomes. J. Cell Biol. 35: 1–13.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Pate, J. L., and E. J. Ordal. 1967b. The fine structure of Chondrococcus columnaris III. The surface layers of Chondrococcus columnaris J. Cell Biol. 35: 37–51.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Pate, J. L., S. J. Petzold, and L. Y. E. Chang. 1979. Phages for the gliding bacterium Cytophaga johnsonae that infect only motile cells. Current Microbiol. 2: 257–262.

    Google Scholar 

  • Payza, A. N., and E. D. Korn. 1956a. The degradation of heparin by bacterial enzymes. J. Biol. Chem. 223: 853–864.

    PubMed  CAS  Google Scholar 

  • Payza, A. N., and E. D. Korn. 1956b. Bacterial degradation of heparin. Nature 177: 227–232.

    Google Scholar 

  • Perry, L. B. 1973. Gliding motility in some nonspreading flexibacteria. J. Appl. Bacteriol. 36: 227–232.

    PubMed  CAS  Google Scholar 

  • Pichinoty, R, J. Bigliardi-Rouvier, M. Mandel, B. Greenway, G. Méténier, and J. L. Garcia. 1976. The isolation and properties of a denitrifying bacterium of the genus Flavobacterium. Antonie van Leeuwenhoek 42: 349–354.

    PubMed  CAS  Google Scholar 

  • Poirier, T. P., and S. C. Holt. 1983a. Acid and alkaline phosphatases of Capnocytophaga species. I. Production and cytological localization of the enzymes. Can. J. Microbiol. 29: 1350–1360.

    CAS  Google Scholar 

  • Poirier, T. R, and S. C. Holt. 1983b. Acid and alkaline phosphatases of Capnocytophaga species. II. Isolation, purification, and characterization of the enzymes from Capnocytophaga ochracea. Can. J. Microbiol. 29: 1361–1368.

    PubMed  CAS  Google Scholar 

  • Poirier, T. R, and S. C. Holt. 1983c. Acid and alkaline phosphatases of Capnocytophaga species. III. The relationship of the enzymes to the cell wall. Can. J. Microbiol. 29: 1369–1381.

    PubMed  CAS  Google Scholar 

  • Poos, J. C., R R. Turner, D. White, G. D. Simon, K. Bacon, and C. T. Russell. 1972. Growth, cell division, and fragmentation in a species of Flexibacter. J. Bacteriol. 112: 1387–1395.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Porter, D., S. Y. Newell, and W. L. Lingle. 1989. Tunneling bacteria in decaying leaves of a seagrass. Aquat. Bot. 35: 395–401.

    Google Scholar 

  • Pringsheim, E. G. 1951. The Vitreoscillaceae: a family of colorless, gliding, filamentous organisms. J. Gen. Microbiol. 5: 124–149.

    PubMed  CAS  Google Scholar 

  • Pyle, S. W., and E. B. Shotts. 1981. DNA homology studies of selected flexibacteria associated with fish disease. Can. J. Fish. Aquat. Sci. 38: 146–151.

    CAS  Google Scholar 

  • Reichardt, W. 1974. Ecophysiology of some aquatic bacteria from the Flavobacterium-Cytophaga group. Zbl. Bakteriol. 1. Abt. Orig., Reihe A 227: 85–93.

    CAS  Google Scholar 

  • Reichardt, W., B. Gunn, and R. R. Colwell. 1983. Ecology and taxonomy of chitinoclastic Cytophaga and related chitin-degrading bacteria isolated from an estuary. Microb. Ecol. 9: 273–294.

    PubMed  CAS  Google Scholar 

  • Reichardt, W., and R. Y. Morita. 1982a. Influence of ternperature adaptation on glucose metabolism in a psychrotrophic strain of Cytophaga johnsonae. Appl. Environm. Microbiol. 44: 1282–1288.

    CAS  Google Scholar 

  • Reichardt, W., and R. Y. Morita. 1982b. Survival stages of a psychrotrophic Cytophaga johnsonae strain. Can. J. Microbiol. 28: 841–850.

    CAS  Google Scholar 

  • Reichenbach, H. 1988. Gliding bacteria in biotechnology. p. 673–696. In. H. J. Rehm and G. Reed (ed.), Biotechnology, vol. 6b. VCH Verlagsges., Weinheim, Germany.

    Google Scholar 

  • Reichenbach, H. 1989. Flexibacter, p. 2061–2071: In: J. Staley (ed.), Bergey’s manual of systematic bacteriology, vol. 3. Williams and Wilkins, Baltimore.

    Google Scholar 

  • Reichenbach, H., K. Gerth, H. Irschik, B. Kunze, G. Höfle, H. Augustiniak, R. Jansen, T. Kemmer, W. Kohl, H. Steinmetz, and W. Trowitzsch. 1984. Results of a screening for antibiotics with gliding bacteria. Third Eur. Congr. Biotechnol., München, vol. 1:15–21. Verlag Chemie, Weinheim, Germany.

    Google Scholar 

  • Reichenbach, H., H. Kleinig, and H. Achenbach. 1974. The pigments of Flexibacter elegans: novel and chemosystematically useful compounds. Arch. Microbiol. 101: 131–144.

    CAS  Google Scholar 

  • Reichenbach, H., W. Kohl, and H. Achenbach. 1981. The flexirubin-type pigments, chemosystematically useful compounds, p. 101–108. In: H. Reichenbach and O. B. Weeks (ed.), The Flavobacterium-Cytophaga group. Verlag Chemie, Weinheim, Germany

    Google Scholar 

  • Reichenbach, H., W. Kohl, A. Böttger-Vetter, and H. Achenbach. 1980. Flexirubin-type pigments in Flavobacterium. Arch. Microbiol. 126: 291–293.

    CAS  Google Scholar 

  • Reichenbach, H., W. Ludwig, and E. Stackebrandt. 1986. Lack of relationship between gliding cyanobacteria and filamentous gliding heterotrophic eubacteria: Comparison of 16S rRNA catalogues of Spirulina, Saprospira, Vitreoscilla, Leucothrix and Herpetosiphon. Arch. Microbiol. 145: 391–395.

    CAS  Google Scholar 

  • Reichenbach, H., and O. B. Weeks. (ed.). 1981. The Flavobacterium-Cytophaga group. Verlag Chemie, Weinheim, Germany.

    Google Scholar 

  • Richter, C. A., and J. L. Pate. 1988. Temperate phages and bacteriocins of the gliding bacterium Cytophaga johnsonae. J. Gen. Microbiol. 134: 253–262.

    PubMed  CAS  Google Scholar 

  • Ridgway, H.F. 1977a. Source of energy for gliding motility in Flexibacter polymorphus: Effects of metabolic and respiratory inhibitors on gliding movement. J. Bacteriol. 131: 544–556.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Ridgway, H.F. 1977b. Ultrastructural characterization of goblet-shaped particles from the cell wall of Flexibacter polymorphus. Can. J. Microbiol. 23: 1201–1213.

    PubMed  CAS  Google Scholar 

  • Ridgway, H.F., and R. A. Lewin. 1973. Goblet shaped subunits from the wall of a marine gliding microbe. J. Gen. Microbiol. 79: 119–128.

    Google Scholar 

  • Ridgway, H.F., and R. A. Lewin. 1983. Subunit composition of goblet-shaped particles from the cell wall of Flexibacter polymorphus. Can. J. Microbiol. 29: 1689–1693.

    PubMed  CAS  Google Scholar 

  • Ridgway, H.F., R. M. Wagner, W. T. Dawsey, and R. A. Lewin. 1975. Fine structure of the cell envelope layers of Flexibacter polymorphus. Can. J. Microbiol. 21: 1733–1750.

    PubMed  CAS  Google Scholar 

  • Rivière, J. 1961. Activité cellulolytique des bactéries aérobies du sol. I. Isolement et purification. Ann. Agron. 12: 385–398.

    Google Scholar 

  • Rivière, J. 196lb. Activité cellulolytique des bactéries aérobies due sol. II. Action des facteurs due milieu sur la production de cellulases bactériennes. Ann. Agron. 12: 399–424.

    Google Scholar 

  • Rosenfelder, G., O. Luderitz, and O. Westphal. 1974. Composition of lipopolysaccharides from Myxococcus fulvus and other fruiting and non-fruiting myxobacteria. Eur. J. Biochem. 44: 411–420.

    PubMed  CAS  Google Scholar 

  • Rucker, R. R., B. J. Earp, and E. J. Ordal. 1953. Infectious diseases of Pacific salmon. Transact. Am. Fish. Soc. 83: 297–312.

    Google Scholar 

  • Ruschke, R. 1968. Die Bedeutung von Wassermyxobakterien für den Abbau organischen Materials. Mitt. Internat. Verein. Limnol. 14: 164–167.

    Google Scholar 

  • Ruschke, R., and K. Köhn. 170. Untersuchungen zum Abbau kondensierter Phosphate aus Waschmiteln durch Sporocytophaga cauliformis un Pseudomonas fluorescens. Zbl. Bakteriol., 2. Abt. 124: 81–90.

    Google Scholar 

  • Ruschke, R., and M. Rath. 1966. Sporocytophaga cauliformis Knorr and Graf, eine Myxobakterienart mit großer Bedeutung für den Abbau organischen Materials. Arch. Hydrobiol., Suppl. 28: 377–402.

    Google Scholar 

  • Saito, A., I. Takazoe, and K. Okuda. 1988. Comparison of hemagglutinating activity, adsorption to saliva-treated hydroxyapatite, and cell surface hydrophobicity of Gram-negative periodontopathic bacteria. Bull. Tokyo Dent. Coll. 29: 51–57.

    Google Scholar 

  • Sandholm, L., K. Mahlberg, H. Jousimies-Somer. 1988. Phospholipase AZ: a possible virulence factor of Capnocytophaga ochracea. Oral Microbiol. Immunol. 3: 18–21.

    CAS  Google Scholar 

  • Sanfilippo, A., and R. A. Lewin. 1970. Preservation of viable flexibacteria at low temperatures. Can. J. Microbiol. 16: 441–444.

    PubMed  CAS  Google Scholar 

  • Sangkhobol, V., and V. B. D. Skerman. 1981. Chitinophaga, a new genus of chitinolytic myxobacteria. Int. J. System. Bacteriol. 31: 285–293.

    Google Scholar 

  • Sarwar, G., S. Matayoshi, and H. Oda. 1987. Purification of a K-carrageenase from marine Cytophaga species. Microbiol. Immunol. 31: 869–877.

    PubMed  CAS  Google Scholar 

  • Shewan, J. M. 1971. The microbiology of fish and fishery products-a progress report. J. Appl. Bacteriol. 34: 299–315.

    PubMed  CAS  Google Scholar 

  • Shewan, J. M., and T. A. McMeekin. 1983. Taxonomy (and ecology) of Flavobacterium and related genera. Annu. Rev. Microbiol. 37: 233–252.

    PubMed  CAS  Google Scholar 

  • Shieh, H. S. 1980. Studies on the nutrition of a fish pathogen, Flexibacter columnaris. Microbios Lett. 13: 129–133.

    CAS  Google Scholar 

  • Shiigi, S. M., R. R. Capwell, K. H. Grabstein, and R. I. Mishell. 1977. Sera and the in vivo induction of immune responses III. Adjuvant obtained from gliding bacteria with properties distinct from gliding bacteria with properties distinct from enteric bacterial lipopolysaccharide. J. Immunol. 119: 679–684.

    CAS  Google Scholar 

  • Shklair, I. L., and S. A. Rails. 1988. Periodontopathic microorganisms in the rice rat (Oryzomys palustris). Microbios 55: 25–31.

    PubMed  CAS  Google Scholar 

  • Shlaes, D. M., M. J. Dul, and P. I. Lerner. 1982. Capnocytophaga bacteremia in the compromised host. Am. J. Clin. Pathol. 77: 359–361.

    Google Scholar 

  • Shoji, J., H. Hinoo, K. Matsumoto, T. Hattori, T. Yoshida, S. Matsuura, and E. Kondo. 1988. Isolation and characterization of katanosins A and B. J. Antibiot. 41: 713–718.

    PubMed  CAS  Google Scholar 

  • Shoji„ J., T. Kato, R. Sakazaki, W. Nagata, Y. Terui, Y. Nakagawa, M. Shiro, K. Matsumoto, T. Hattori, T. Yoshida, and E. Kondo. 1984. Chitinovorins A, B and C, novel ß-lactam antibiotics of bacterial origin. J. Antibiot. 37: 1486–1490.

    Google Scholar 

  • Shurin, S. B., S. S. Socransky, E. Sweeney, and T. P. Stossel. 1979. A neutrophil disorder induced by Capnocytophaga, a dental microorganism. New Engl. J. Med. 301: 849–854.

    CAS  Google Scholar 

  • Sijpesteijn, A. K., and G. Fâhraeus. 1949. Adaptation of Sporocytophaga myxococcoides to sugars. J. Gen. Microbiol. 3: 224–235.

    PubMed  CAS  Google Scholar 

  • Simon, G. D., and D. White. 1971. Growth and morphological characteristics of a species of Flexibacter. Arch. Mikrobiol. 78: 1–16.

    PubMed  CAS  Google Scholar 

  • Singh, P. D., J. H. Johnson, P. C. Ward, J. S. Wells, W. H. Trejo, and R. B. Stykes. 1983. SQ 28,332, a new monobactam produced by a Flexibacter sp. Taxonomy, fermentation, isolation, structure determination and biological properties. J. Antibiot. 36: 1245–1251.

    PubMed  CAS  Google Scholar 

  • Singh, P. D., P. C. Ward, J. S. Wells, C. M. Ricca, W. H. Trejo, P. A. Principe, and R. B. Sykes. 1982. Bacterial production of deacetoxycephalosporin. C. J. Antibiot. 35: 1397–1399.

    CAS  Google Scholar 

  • Singh, P. D., M. G. Young, J. H. Johnson, C. M. Cimarusti, and R. B. Sykes. 1984. Bacterial production of 7-formamidocephalosporins. Isolation and structure determination. J. Antibiot. 37: 773–780.

    PubMed  CAS  Google Scholar 

  • Snieszko, S. F., 1953. Therapy of bacterial fish diseases. Transact. Americ. Fish. Soc. 83: 313–330.

    Google Scholar 

  • Snieszko, S. E, 1974. The effects of environmental stress on outbreaks of infectious diseases of fishes. J. Fish Biol. 6: 197–208.

    Google Scholar 

  • Snieszko, S. E, and G. L. Bullock. 1976. Columnaris disease of fishes, Fish disease leaflet no. 45. U.S. Department of the Interior, Fish and Wildlife Service, Washington, DC.

    Google Scholar 

  • Solntseva, L. I. 1940. Biology of myxobacteria. I. Myxococcus. Mikrobiologiya 9: 217–232 (In Russian, with English summary).

    Google Scholar 

  • Song, Y. L., J. L. Fryer, and J. S. Rohovec. 1988a. Comparison of six media for the cultivation of Flexibacter columnaris. Fish Pathol. 23: 91–94.

    Google Scholar 

  • Song, Y. L., J. L. Fryer, and J. S. Rohovec. 1988b. Comparison of gliding bacteria isolated from fish in North America and other areas of the Pacific rim. Fish Pathol. 23: 197–202.

    Google Scholar 

  • Soriano, S. 1945. El nuevo orden Flexibacterales y la clasificación de los órdenes de las bacterial. Revistaa Argentina de Agronomia (Buenos Aires) 12: 120–140.

    Google Scholar 

  • Soriano, S. 1947. The Flexibacterales and their systematic position. Antonie van Leeuwenhoek 12: 215–222.

    PubMed  CAS  Google Scholar 

  • Spangenberg, R. 1975. Orientierende Untersuchungen über das Vorkommen von Myxobakterien bei der Kiemennekrose des Karpfens. Ztschr. Binnenfisch. DDR 22: 121–127.

    Google Scholar 

  • Speyer, E. 1953. Untersuchungen an Sporocytophaga myxococcoides (Stanier 1940). Arch. Mikrobiol. 18: 245–272.

    PubMed  CAS  Google Scholar 

  • Stanier, R. Y. 1941. Studies on marine agar digesting bacteria. J. Bacteriol. 42: 527–558.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Stanier, R. Y. 1942. The Cytophaga group: A contribution to the biology of myxobacteria. Bacteriol. Rev. 6: 143–196.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Stanier, R. Y. 1947. Studies on nonfruiting myxobacteria. I. Cytophaga johnsonae n. sp., a chitin-decomposing myxobacterium. J. Bacteriol. 53: 297–315.

    CAS  PubMed Central  Google Scholar 

  • Stapp, C., and H. Bortels. 1934. Mikrobiologische Untersuchungen über die Zersetzung von Waldstreu. Zbl. Bakteriol. 2. Abt. 90: 28–66.

    CAS  Google Scholar 

  • Starliper, C. E., E. B. Shotts, T. C. Hsu, and W. B. Schill. 1988. Genetic relatedness of some Gram-negative yellow pigmented bacteria from fishes and aquatic environments. Microbios 56: 181–198.

    Google Scholar 

  • Stevens, R. H., and B. F. Hammond. 1988. The comparative cytotoxicity of a periodontal bacteria. J. Periodontol. 59: 741–749.

    PubMed  CAS  Google Scholar 

  • Stroh], W. R. 1979. Ultrastructure of Cytophaga johnsonae and C. aquatilis by freeze-etching. J. Gen. Microbiol. 112: 261–268.

    Google Scholar 

  • Strohl, W. R., and L. R. Tait. 1978. Cytophaga aquatilis sp. nov., a facultative anaerobe isolated from the gills of freshwater fish. Int. J. Syst. Bacteriol. 28: 293–303.

    Google Scholar 

  • Stucki, G., and M. Alexander. 1987. Role of dissolution rate and solubility in biodegradation of aromatic compounds. Appl. Environm. Microbiol. 53: 292–297.

    CAS  Google Scholar 

  • Stürzenhofecker, P. 1966. Bakteriophagen bei Wassermyxobakterien. Arch. Hyg. Bakteriol. 150: 153–157.

    PubMed  Google Scholar 

  • Suido, H., M. Nakamura, P. A. Mashimo, J. J. Zambon, and R. J. Genco. 1986. Arylaminopeptidase activities of oral bacteria. J. Dent. Res. 65: 1335–1340.

    PubMed  CAS  Google Scholar 

  • Sundarraj, N., and J. V. Bhat. 1971. Endo-polygalacturonate lyase of Cytophaga johnsonii. Arch. Mikrobiol. 77: 155164.

    Google Scholar 

  • Sundarraj, N., and J. V. Bhat. 1972 Breakdown of chitin by Cytophaga johnsonii. Arch. Mikrobiol. 85: 159–167.

    PubMed  CAS  Google Scholar 

  • Sutherland, I. W., and M. L. Smith. 1973. The lipopolysaccharides of fruiting and non-fruiting myxobacteria. J. Gen. Microbiol. 74: 259–266.

    CAS  Google Scholar 

  • Tchan, Y. T., and J. Giuntini. 1950. Action antagoniste chez les Cytophagaceae. Ann. Inst. Pasteur 50: 415–416.

    Google Scholar 

  • Turvey, J. R., and J. Christison. 1967. The hydrolysis of algal galactans by enzymes from a Cytophaga species. Biochem. J. 105: 311–316.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Umezawa, H., Y. Okami, S. Kurasawa, T. Ohnuki, M. Ishizuka, T. Takeuchi, T. Shiio, and Y. Yugari. 1983. Marinactan, antitumor polysaccharide produced by marine bacteria. J. Antibiot. 36: 471–477.

    PubMed  CAS  Google Scholar 

  • Usinger, W. R., G. C. Clark, E. Gottschalk, S. Holt, and R. I. Mishell. 1985. Characteristics of bacterium GB-2, a presumptive Cytophaga species with novel immunoregulatory properties. Current Microbiol. 12: 203–208.

    Google Scholar 

  • Valentine, A. F., and G. B. Chapman. 1966. Fine structure and host-virus relationship of a marine bacterium and its bacteriophage. J. Bacteriol. 92: 1535–1554.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Vance, I., C. M. Topham, S. L. Blayden, and J. Tampion. 1980. Extracellular cellulase production by Sporocytophaga myxococcoides NCIB 8639. J. Gen. Microbiol. 117: 235–241.

    CAS  Google Scholar 

  • van der Meulen, H. J., and W. Harder. 1975. Production and characterization of the agarase of Cytophaga flevensis. Antonie van Leeuwenhoek 41: 431–447.

    PubMed  Google Scholar 

  • van der Meulen, H. J., and W. Harder. 1976. Characterization of the neoagarotetra-ase and neoagarobiase of Cytophaga flevensis. Antonie van Leeuwenhoek 42: 81–94.

    Google Scholar 

  • van der Meulen, H. J., W. Harder, and H Veldkamp. 1974. Isolation and characterization of Cytophaga flevensis sp. nov., a new agarolytic flexibacterium. Antonie van Leeuwenhoek 40: 329–346.

    PubMed  Google Scholar 

  • Veldkamp, H. 1955. A study of the aerobic decomposition of chitin by microorganisms. Mededelingen van de Landbouwhogeschool te Wageningen 55: 127–174.

    CAS  Google Scholar 

  • Veldkamp, H. 1961. A study of two marine agar-decomposing, facultatively anaerobic myxobacteria. J. Gen. Microbiol. 26: 331–342.

    PubMed  CAS  Google Scholar 

  • Veldkamp, H. 1965. Isolation of Cytophaga and Sporocytophaga. Zbl. Bakteriol. 1. Abt., Suppl. 1: 81–90.

    Google Scholar 

  • Verma, J. P. 1970. The amino acid sequence of mureins of Cytophaga hutchinsonii and Sporocytophaga myxococcoides. Proc. Ind. Nat. Sci. Acad. 36 B: 364–368.

    Google Scholar 

  • Verma, J. P., and H. H. Martin. 1967b. Chemistry and ultrastructure of surface layers in primitive myxobacteria: Cytophaga hutchinsonii and Sporocytophaga myxococcoides. Folia Microbiol. 12: 248–254.

    CAS  Google Scholar 

  • Verma, J. P., and H. H. Martin. 1967. Über die Oberflächenstruktur von Myxobakterien I. Chemie und Morphologie der Zellwände von Cytophaga hutchinsonii und Sporocytophaga myxococcoides. Arch. Mikrobiol. 59: 355–380.

    PubMed  CAS  Google Scholar 

  • Wakabayashi, H., and S. Egusa. 1974. Characteristics of myxobacteria associated with some freshwater fish diseases in Japan. Bull. Jap. Soc. Sci. Fish. 40: 751–757.

    Google Scholar 

  • Wakabayashi, H., M. Hikida, and K. Masumura. 1986. Flexibacter maritimus sp. nov., a pathogen of marine fishes. Int. J. Syst. Bacteriol. 36: 396–398.

    Google Scholar 

  • Wakabayashi, H., G. J. Huh, and N. Kimura. 1989. Flavobacterium branchiophila sp. nov., a causative agent of bacterial gill disease of freshwater fishes. Int. J. Syst. Bacteriol. 39: 213–216.

    Google Scholar 

  • Wakabayashi, H., K. Kira, and S. Egusa. 1970a. Studies on columnaris disease of pond-cultured eels. I. Characteristics and pathogenicity of Chondrococcus columnaris isolated from pond-cultured eels [In Japanese, with English summary.] Bull. Jap. Soc. Scientif. Fish. 36: 147–154.

    Google Scholar 

  • Wakabayashi, H., K. Kira, and S. Egusa. 1970b. Studies on columnaris disease of pond-cultured eels. II. The relation between gill disease and Chondrococcus columnaris [In Japanese, with English summary.] Bull. Jap. Soc. Scientif. Fish. 36: 678–685.

    Google Scholar 

  • Walker, E., and F. L. Warren. 1938. Decomposition of cellulose by Cytophaga. I. Biochem. J. 32: 31–43.

    CAS  Google Scholar 

  • Walker, R. W. 1969. Cis-l1-hexadecenoic acid from Cytophaga hutchinsonii lipids. Lipids 4: 15–18.

    PubMed  CAS  Google Scholar 

  • Ward, O.P., and W. M. Fogarty. 1974. Polygalacturonate lyase production by Bacillus subtilis and Flavobacterium pectionvorum. Appl. Microbiol. 27: 346–350.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Warke, G. M., and S. A. Dhala. 1968. Use of inhibitors for selective isolation and enumeration of cytophagas from natural substrates. J. Gen. Microbiol. 51: 43–48.

    PubMed  CAS  Google Scholar 

  • Webley, D. M., E. A. C. Follett, and I. R Taylor. 1967. A comparison of the lytic action of Cytophaga johnsonii on a eubacterium and a yeast. Antonie van Leeuwenhoek 33: 159–165.

    PubMed  CAS  Google Scholar 

  • Weeks, O. B. 1974. Flavobacterium, p. 357–364. In: R. E. Buchanan and N. E. Gibbons (ed.), Bergey’s manual of determinative bacteriology, 8th ed. Williams & Wilkins, Baltimore.

    Google Scholar 

  • Weeks, O. B. 1981. Preliminary studies of the pigments of Flavobacterium breve NCTC 11099 and Flavobacterium odoratum NCTC 11036, p. 109–114. In: H. Reichenbach and O. B. Weeks (ed.), The Flavobacterium Cytophaga group. Verlag Chemie, Weinheim, Germany.

    Google Scholar 

  • Weiss, E. I., J. London, P. E. Kolenbrander, A. S. Kagermeier, and R. N. Andersen. 1987. Characterization of lectinlike surface components on Capnocytophaga ochracea ATCC 33596 that mediate coaggregation with Gram-positive oral bacteria. Infect. Immun. 55: 1198–1202.

    PubMed  CAS  PubMed Central  Google Scholar 

  • White, R. H. 1984. Biosynthesis of the sulfonolipid 2- amino-3-hydroxy-15-methylhexadecane-1-sulfonic acid in the gliding bacterium Cytophaga johnsonae. J. Bacteriol. 159: 42–46.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Willets, A. 1983. Bacterial metabolism of aliphatic diols. Function of alcohol oxidases and catalase in Flavobacterium sp. NCIB 11171. J. Gen. Microbiol. 129: 997–1004.

    Google Scholar 

  • Williams, B. L., and B. F. Hammond. 1979. Capnocytophaga: new genus of Gram-negative gliding bacteria. IV. DNA base composition and sequence homology. Arch. Microbiol. 122: 35–39.

    Google Scholar 

  • Williams, B. L., D. Hollis, and L. V. Holdeman. 1979. Synonymy of strains of Center for Disease Control group DF-1 with species of Capnocytophaga. J. Clin. Microbiol. 10: 550–556.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Winogradsky, S. N. 1929. Études sur la microbiologie du sol. Sur la dégradation de la cellulose dans le sol. Ann. Inst. Pasteur 43: 549–633.

    CAS  Google Scholar 

  • Woese, C. R., E. Stackebrandt, T. J. Macke, and G. Fox. 1985. A phylogenetic definition of the major eubacterial taxa. System. Appl. Microbiol. 6: 143–151.

    CAS  Google Scholar 

  • Wolkin, R. H., and J. L. Pate. 1984. Translocation of motile cells of the gliding bacterium Cytophaga johnsonii depends on a surface component that may be modified by sugars. J. Gen. Microbiol. 130: 2651–2669.

    CAS  Google Scholar 

  • Wolkin, R. H., and J. L. Pate. 1986. Phage adsorption and cell adherence are motile-dependent characteristics of the gliding bacterium Cytophaga johnsonii. J. Gen. Microbiol. 132: 355–367.

    CAS  Google Scholar 

  • Yabuuchi, E., T. Kaneko, I. Yano, C. W. Moss, and N. Miyoshi. 1983. Sphingobacterium gen. nov., Sphingobacterium spiritivorum comb. nov., Sphingobacterium multivorum comb. nov., Sphingobacterium mizutae sp. nov., and Flavobacterium indologenes sp. nov.: glucosenonfermenting Gram-negative rods in CDC groups IIK2- and IIb. Int. J. Syst. Bacteriol. 33: 580–598.

    Google Scholar 

  • Yamamoto, T. 1967. Presence of rhapidosomes in various species of bacteria and their morphological characteristics. J. Bacteriol. 94: 1746–1756.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Yano, I., S. Imaizumi, I. Tomiyasu, and E. Yabuuchi. 1983. Separation and analysis of free ceramides containing 2-hydroxy fatty acids in Sphingobacterium species. FEMS Microbiol. Lett. 20: 449–453.

    CAS  Google Scholar 

  • Yano, I., Y. Ohno, M. Masui, K. Kato, E. Yabuuchi, and A. Ohyama. 1976. Occurrence of 2-and 3-hydroxy fatty acids in high concentrations in the extractable and bound lipids of Flavobacterium meningosepticum and Flavobacterium IIb. Lipids 11: 685–688.

    PubMed  CAS  Google Scholar 

  • ZoBell, C. E., and H. C. Upham. 1944. A list of marine bacteria including descriptions of sixty new species. Bull. Scripps Inst. Oceanogr. Univ. Calif. (Technical Series) 5: 239–292.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media New York

About this chapter

Cite this chapter

Reichenbach, H. (1992). The Order Cytophagales. In: Balows, A., Trüper, H.G., Dworkin, M., Harder, W., Schleifer, KH. (eds) The Prokaryotes. Springer, New York, NY. https://doi.org/10.1007/978-1-4757-2191-1_37

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-2191-1_37

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4757-2193-5

  • Online ISBN: 978-1-4757-2191-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics