Skip to main content

Optics in Multiple-Instruction, Multiple-Data Stream Computers

  • Chapter
Book cover Frontiers of Computing Systems Research

Part of the book series: Frontiers of Computing Systems Research ((FCSR,volume 2))

Abstract

Parallel computers have demonstrated their abilities in parallel or con-current processing since the 1950s, by demonstrating their capability to per-form a myriad of processing tasks such as computational seismics, chemical reaction and aerodynamic simulation, neural networking, dynamic imaging and robot vision. But it did last until the first part of the 1980s that sys-tems were designed specifically to explore parallelism with the purpose to operate efficiently on vectors or arrays of numbers. Studies on large-scale parallelism could only be accomplished on behalf of the structure of an overall organisation, which we define as the architecture of a computer sys-tem. The choice of the hardware, the amount of local intelligence available and the type of microprocessor used are the building stones of the mutual independent functioning processing nodes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M.A. Franklin and Sanjay Dhar, On designing interconnection net-works for multi-processors, Proc. of the 1986 International Conference on Parallel Processing, Chicago, USA, pp. 208–215 (1986).

    Google Scholar 

  2. M.J. Flynn, Some computer organizations and their effectiveness, IEEE Trans. Comput., Vol. C-21, pp. 948–960 (1972).

    Article  Google Scholar 

  3. J.E. Shore, Second thoughts on parallel processing, Comput. Electr. Eng. Vol. 1, pp. 95–109(1973).

    Article  MATH  Google Scholar 

  4. R.W. Hockney, MIMD computing in the USA-1984, Parallel Com-puting 2, pp. 119–136 (1985).

    Article  MathSciNet  Google Scholar 

  5. R.W. Hockney, Novel Computer Architectures Report RCS 188, Reading University Computer Science Department, Reading, Berks, UK (1985).

    Google Scholar 

  6. R.W. Hockney and C.R. Jesshope, Parallel Computer 2: Architecture Programming and Algorithms, Adam Hilger, Bristol and Philadelphia (1988).

    Google Scholar 

  7. E.E.E. Frietman, A blue print of suitable OELE processing techniques, Report TUD-ENKA/AKZO, Delft University of Technology, Delft (1986).

    Google Scholar 

  8. E.E.E. Frietman and W. van Nifterick, Optical links in the Delft Parallel Processor; A preliminary Research by the Delft University of Technology & ENKA/AKZO Business Group, Progress Report, Delft University of Technology, Delft, the Netherlands (1986).

    Google Scholar 

  9. E.E.E. Frietman and W. van Nifterick, Opto-electronic and electro-optic integrated circuits for high speed parallel processing, Research Report by order of ENKA/AKZO Business Group, Delft University of Technology, Delft, The Netherlands (1986).

    Google Scholar 

  10. J. Gringerg, R.G.R. Nudd, and R.D. Etchells, A Cellular VLSI Architecture, IEEE Computer, pp. 69–81 (1984).

    Google Scholar 

  11. L.A. Hornak, S.K. Tewksbury, M. Hatamian, A. Ligtenbetg, B. Sugla, and P. Franzon, Through wafer optical interconnects for multi-wafer wafer-scale integrated architectures, SPIE Vol. 679, Current Developments in Optical Engineering and Diffraction Phenomena, pp. 57–62 (1986).

    Google Scholar 

  12. L. Dekker, Applicability of Hybrid Simulation, AICA-Journal, Vol. 4, pp. 233–243 (1975).

    Google Scholar 

  13. S.W. Brok, L. Dekker, E.J.H. Kerckhoffs, A.B. Ruighaver, and H.J. Sips, Architecture and programming of the MIMD structured Delft Parallel Processor, Proc. 1st European Simulation Congress (1983).

    Google Scholar 

  14. L. Dekker, Expandibility of an MIMD Multi-processor system to a large she, Proc. Simulation, SCS Eastern Simulation Conf., pp. 157–162 (1985).

    Google Scholar 

  15. H.J. Sips, Design aspects of a distributed MIMD processor, Ph.D. Thesis, Delft University of Technology (1984).

    Google Scholar 

  16. A.B. Ruighaver, Design aspects of the Delft Parallel Processor DPP84 and its programming system, Computer Architecture News, vol. 14 (1), pp. 14–20 (1987).

    Google Scholar 

  17. E.E.E. Frietman and L. Dekker, The POWERRAM™, Dutch Patent, application number: 86.02684; European Patent, application number: 87 202068.0 (1987).

    Google Scholar 

  18. E.E.E. Frietman and A.B. Ruighaver, An electro-optic data communi-cation system for the Delft Parallel Processor, Computer Architecture News, Vol. 15 (6), pp. 2–7 (1987).

    Article  Google Scholar 

  19. L. Dekker and J.C. Zuidervaart, Some ideas about parallelization of Knowledge Processing in Research and Development, Proc. 2nd Euro-pean Simulation Multi Conference, Nice, France, pp. 112–117 (1988).

    Google Scholar 

  20. L. Dekker and E.E.E. Frietman, Optical link and processor clustering in the Delft Parallel Processor, Proc. 2nd European Simulation Multi-conference, Nice (1988).

    Google Scholar 

  21. L. Dekker, E.E.E. Frietman, W. Smit and J.C. Zuidervaart, Opti-cal link in the Delft Parallel Processor, an example of an MOMI-connection in MIMD-supercomputers in Frontiers in Computing, North Holland Publishers, pp. 141–156 (1988).

    Google Scholar 

  22. Th.J.M. Jongeling, E.E.E. Frietman, K. Moddemeier, and L. Dekker, Kaleidoscopic optical backplane for parallel processing, SPIEs Fiber Optic Datacom and Computer Networks, Vol. 991, pp. 22–27, Boston, USA (1988).

    Google Scholar 

  23. E.E.E. Frietman, L. Dekker, E.H. Nordholt, and D. Chr. van Maaren, Optical Interconnects facilitate the way to massive parallelism, SPIEs Optic Fiber Datacom and Computer Networks, Vol. 991, pp. 152–161, Boston, USA (1988).

    Google Scholar 

  24. H.J. Siegel, Interconnection Networks for Large-Scale Parallel Processing, Lexington Books, Lexington, Massachusetts (1985).

    Google Scholar 

  25. P.R. Haugen, S. Rychnovsky, A. Husain, and L.D. Hutcheson, Optical Interconnects for high speed computing, Opt. Eng., Vol. 25 (10), pp. 1076–1085 (1986).

    Google Scholar 

  26. A.J. de Gtoot, E.M. Johansson, and S.R. Parker, A Systolic Array for Efficient Execution of the Fadeev Algorith, SPIEs Real Time Signal Processing, Vol. 827, pp. 86–94 (1987).

    Google Scholar 

  27. E.E.E. Frietman, A. de Vette, L. Dekker, and L. Tassakos, Optical Interconnects in a multicomputer environment, Proc. of the Inter-national Congress on Optical Science and Engineering, March 12–15, The Hague, the Netherlands (1990).

    Google Scholar 

  28. H.H. Berger and S.K. Wiedman, Merged Transistor Logic [MTL]- a low cost bipolar logic concept, IEEE J. Solid-State Circuits, Vol SC-7, pp. 340–346 (1972).

    Article  Google Scholar 

  29. K. Hart and A. Slob, Integrated Injection Logic: A new approach to LSI, IEEE J. Solid-State Circuits, Vol. SC-7, pp. 346–351 (1972).

    Article  Google Scholar 

  30. J.B.F. Melein, Realization of an optic sensitive memory element in bipolar process, Internal Report, Faculty of Applied Physics, Delft University of Technology, Delft, the Netherlands (1987).

    Google Scholar 

  31. J.B. Sondervan, E.H. Nordholt and L.P. de Jong, Integrated PINphotodiode, Internal Report of the Electronic Research Laboratory of the Department of Electrical Engineering, Delft University of Tech-nology, Delft, the Netherlands (1983).

    Google Scholar 

  32. L.A. Bergman, W.H. Wu, A.R. Johnston, and R. Nixon, Holographic optical Interconnects for VLSI, Optical Engineering, Vol. 25, (10), pp. 1109–1118 (1986).

    Google Scholar 

  33. W.H. Wu, L.A. Bergman, R.A. Allen, and A.R. Johnston, Optical Addressing Techniques for a CMOS RAM, SPIE Vol. 836, Optoelec-tronic materials, Devices, Packaging and Interconnects, pp. 351–357 (1987).

    Google Scholar 

  34. E.E.E. Frietman, The realization of a POWERRAM in CMOS tech-niques, Feasibility study in behalf of the implementation of optical interconnects in the next generation Delft Parallel Processor at the Delft University of Technology, Delft (1988).

    Google Scholar 

  35. E.E.E. Frietman, D. Persad, P. Biezen, and L. Dekker, Fundamental aspects of an Optically driven CMOS storage element, to be published (1991).

    Google Scholar 

  36. E.E.E. Frietman, P. Biezen, D. Persad, and L. Dekker, Optically influencing the meta-stable state of a CMOS flip-flop, to be published (1991).

    Google Scholar 

  37. A. Ackaert, P. Demeester, D. Lootens, I. Moerman, and R. Baets Selective and non-planar growth of GaAs on Si by MOVPE, Second European Workshop on MOVPE, St. Andrews, Scotland (1988).

    Google Scholar 

  38. A. Ackaert, L. Buydens, D. Lootens, P. van Daele, and P. Demeester, Crack formation and thermal stress relaxation of GaAs on Si growth by Metal Organic Vapour Phase Epitaxy, Appl. Phys. Lett., vol. 55 (21), pp. 2197–2189(1989).

    Article  Google Scholar 

  39. A. Ackaert, P. Demeester, L. Buydens, G. Coudenys, and P. van Daele, Selective growth of GaAs on Si and its applications to LEDs, paper to be presented at IC-MOVPE V, Aachen, to be published in J. Cryst. Growth (1990).

    Google Scholar 

  40. E. Yablonovitch, T. Gmitter, J. Harbison, and R. Bhat, Extreme selectivity in the lift-off of epitaxial GaAs films, Appl. Phys. Lett., Vol. 51 (26), pp. 2222–2224 (1987).

    Article  Google Scholar 

  41. A.C. O’Donnel, I. Pollentier, P. Demeester, P. van Daele and A.D. Carr, Integration of GaAs MESFETs and lithium niobate optical switches using epitaxial lift-off, submitted to Electr. Lett. (1991).

    Google Scholar 

  42. I. Pollentier, P. Demeester, A. Ackaert, L. Buydens, P. van Daele, and R. Baets, The epitaxial lift-off of GaAs LEDs to Si for the fabrication of opto-electronic integrated circuits, Electr. Lett., Vol. 26, pp. 193–194 (1990).

    Article  Google Scholar 

  43. I. Pollentier, A. Ackaert, P. Demeester, and P. van Daele, Fabrication of high radiance LEDs by epitaxial lift-off, Paper submitted to the SPIE International Conference on Physical Concepts of Materials for novel Opto-Electronk Device Applications, Aachen, FRG (1990).

    Google Scholar 

  44. I. Pollentier, L. Buydens, A. Ackaert, P. Demeester, P. van Daele, F. de Pestel, D. Lootens, and R. Baets, Monolithic integration of an InGaAs/GaAs/AlGaAs strained layer SQW LED and GaAs MES-FET using epitaxial lift-off, submitted to Electr. Lett. (1991).

    Google Scholar 

  45. G.R. Mohlmann, Perspectives for optically nonlinear polymers in optoelectronic applications, SPIE, Vol. 866, Materials and Technologies for Optical Communication, pp. 80–84 (1988).

    Google Scholar 

  46. E.E.E. Frietman, W. van Nifterick, L. Dekker, and Th.J.M. Jongeling, Parallel optical interconnects: implementation of opto-elecironics in multi-processor architectures, Applied Optics, Special Issue of Applied Optics on Optical Interconnects, Vol. 29 (8), pp. 1161–1177 (1990).

    Google Scholar 

  47. E.E.E. Frietman, L. Dekker, W. van Nifterick, P. Demeester, P. van Daele, and W. Smit, Current status and future research of the Delft ‘supercomputer’ project, Invited Paper, SPIE’s International Symposium on Advances in Interconnects and Packaging, OE/Boston’90, Applications in Optical Science and Engineering, to be published (1990).

    Google Scholar 

  48. C. Fernstrom, The LUCAS Associative Array Processor and its programming environment, Ph.D. Thesis, U. Lund, Sweden (1983).

    Google Scholar 

  49. T. Kohonen, Content Addressable Memories, Springer Verlag, New York (1987).

    Book  MATH  Google Scholar 

  50. R. Stodieck, The IDT FourPort ™ RAM facilitates multiprocessor designs, Application note AN-43, Integrated Device Technology, Inc.

    Google Scholar 

  51. W. van Nifterick, De haalbaarheid van parallelle optische intercon-nectieverbindingen en de oniwikheling van een optisch beschrijfiaar geheugen, de POWERRAM, Master Thesis, Delft University of Technology, Delft (1989).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Plenum Press, New York

About this chapter

Cite this chapter

Frietman, E.E.E. (1991). Optics in Multiple-Instruction, Multiple-Data Stream Computers. In: Tewksbury, S.K. (eds) Frontiers of Computing Systems Research. Frontiers of Computing Systems Research, vol 2. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-7032-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-7032-5_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-7034-9

  • Online ISBN: 978-1-4615-7032-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics