Skip to main content

Part of the book series: Population and Community Biology Series ((PCBS,volume 18))

Abstract

This chapter, like Chapter 2, is about population models in which time and population structure are discrete, but here the models contain vital rates that vary randomly over time. Such random variation is ubiquitous and can strongly influence the dynamics and evolution of populations. I aim to present the main ideas and techniques that are used to study these influences. These methods are applied in Chapter 8 by Orzack, Chapter 15 by Nations and Boyce, and Chapter 16 by Dixon et al.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  • Bartlett, M. S. 1978. An Introduction to Stochastic Processes. 3d ed. Cambridge University Press.

    Google Scholar 

  • Benton, T. G., and A. Grant. 1996. How to keep fit in the real world: Elasticity analyses and selection pressures on life histories in a variable environment. American Naturalist 147: 115–139.

    Article  Google Scholar 

  • Box, G. E. P., G. M. Jenkins, and G. C. Reinsel. 1994. Time Series Analysis: Forecasting and Control. 3rd ed. Prentice Hall, Englewood Cliffs, N.J.

    Google Scholar 

  • Chatfield, C. 1989. The Analysis of Time Series. Chapman & Hall, London.

    Google Scholar 

  • Cohen, J. E. 1977. Ergodicity of age structure in populations with Markovian vital rates. II. General states. Advances in Applied Probability 9: 18–37.

    Article  Google Scholar 

  • Furstenberg, H., and H. Kesten. 1960. Products of random matrices. Annals of Mathematical Statistics 31: 457–469.

    Article  Google Scholar 

  • Gardiner, C. W. 1985. Handbook of Stochastic Methods for Physics, Chemistry, and the Natural Sciences. Springer-Verlag, Berlin.

    Google Scholar 

  • Karlin, S., and H. M. Taylor. 1975. A First Course in Stochastic Processes. 2nd ed. Academic Press, New York.

    Google Scholar 

  • Kemeny, J. G., and J. L. Snell. 1960. Finite Markov Chains. Van Nos-trand, Princeton, N.J.

    Google Scholar 

  • Key, E. S. 1987. Computable examples of the maximal Lyapunov exponent. Probability Theory & Related Fields 75: 97–107.

    Article  Google Scholar 

  • Keyfitz, N. 1985. Applied Mathematical Demography. 2nd ed. Springer-Verlag, New York.

    Google Scholar 

  • Knuth, D. E. 1981. The Art of Computer Programming. Volume 2: Seminumerical Algorithms. Addison-Wesley, Reading, Mass.

    Google Scholar 

  • Manton, K. G., and E. Stallard. 1988. Chronic Disease Modelling: Measurement and Evaluation of the Risks of Chronic Disease Processes. Oxford University Press, New York.

    Google Scholar 

  • Metz, J. A. J., S. A. H. Geritz, and R. M. Nisbet. 1992. How should we define fitness for general ecological scenarios? Trends in Ecology & Evolution 7: 198–202.

    Article  CAS  Google Scholar 

  • Ott, E. 1993. Chaos in Dynamical Systems. Cambridge University Press.

    Google Scholar 

  • Ripley, B. D. 1987. Stochastic Simulation. Wiley, New York.

    Book  Google Scholar 

  • Roerdink, J. B. T. M. 1987. The biennial life strategy in a random environment. Journal of Mathematical Biology 26: 199–215.

    Article  Google Scholar 

  • Roerdink, J. B. T. M.. 1989. The biennial life strategy in a random environment. Supplement. Journal of Mathematical Biology 27: 309–320.

    Article  Google Scholar 

  • Scarier, W. M. 1974. Optimal reproductive efforts in fluctuating environments. American Naturalist 108: 783–790.

    Article  Google Scholar 

  • Seneta, E. 1981. Non-Negative Matrices and Markov Chains. Springer-Verlag, New York.

    Google Scholar 

  • Tuljapurkar, S. 1990. Population Dynamics in Variable Environments. Springer-Verlag, New York.

    Google Scholar 

  • Tuljapurkar, S., and C. Istock. 1993. Environmental uncertainty and variable diapause. Theoretical Population Biology 43: 251–280.

    Article  PubMed  CAS  Google Scholar 

  • Tuljapurkar, S., and R. Lee. In press. Demographic uncertainty and the stable equivalent population. Mathematical and Computer Modelling.

    Google Scholar 

  • Tuljapurkar, S., and S. H. Orzack. 1980. Population dynamics in variable environments. I: Long-run growth rates and extinction. Theoretical Population Biology 18: 314–342.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Tuljapurkar, S. (1997). Stochastic Matrix Models. In: Tuljapurkar, S., Caswell, H. (eds) Structured-Population Models in Marine, Terrestrial, and Freshwater Systems. Population and Community Biology Series, vol 18. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5973-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5973-3_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-412-07271-0

  • Online ISBN: 978-1-4615-5973-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics