Skip to main content

Suppression of Plant Defence in the Medicago Sativa (Alfalfa)-Sinorhizobium meliloti Symbiosis

  • Chapter
  • 141 Accesses

Abstract

The gene cluster of Sinorhizobium meliloti directing the biosynthesis of the exopolysaccharide succinoglycan (EPS I) was analyzed in detail. S. meliloti mutants deficient in EPS I production induced the formation of non-infected pseudonodules displaying plant defence reactions. The hypothesis that the plant defence in alfalfa is suppressed by the S. meliloti exopolysaccharide EPS I was verified using elicitor responsive alfalfa suspension cultures. It was shown that yeast elicitors, chitin oligosaccharides and cell wall fragments of alfalfa cells induced an alkalinization of the cell culture medium. The alkalinization of alfalfa cell cultures could be reduced drastically by adding low molecular weight EPS I indicating that this compound acts as a signal substance in the suppression of alfalfa defence reactions.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Becker A, Kleickmann A, Arnold W, and Pühler A 1993. Analysis of the Rhizobium meliloti exoH/exoK/exoL fragment: ExoK shows homology to excreted endo-β-1,3–1,4-glucanases and ExoH resembles membrane proteins. Mol. Gen. Genet. 238, 145–154.

    CAS  Google Scholar 

  • Becker A, Kleickmann A, Keller M, Arnold W, and Pühler A 1993. Identification and analysis of the Rhizobium meliloti exoAMONP genes involved in exopolysaccharide biosynthesis and mapping of promoters located on the exoHKLAMONP fragment. Mol. Gen. Genet. 241, 367–379.

    Article  PubMed  CAS  Google Scholar 

  • Becker A, Kleickmann A, Küster H, Keller M, Arnold W, and Pühler A 1993. Analysis of the Rhizobium meliloti genes exoU, exoV,exoW, exoT, and exoI involved in exopolysaccharide biosynthesis and nodule invasion: exoU and exoW probably encode glucosyltransferases. MPMI 6, 735–744.

    Article  PubMed  CAS  Google Scholar 

  • Becker A, Küster H, Niehaus K, and Pühler A 1995. Extension of the Rhizobium meliloti succinoglycan biosynthesis gene cluster: identification of the exsA gene encoding an ABC transporter protein, and the exsB gene which probably codes for a regulator of succinoglycan biosynthesis. Mol. Gen. Genet. 249, 487–497.

    CAS  Google Scholar 

  • Buendia AM, Enenkel B, Köplin R, Niehaus K, Arnold W, and Pühler A 1991. The Rhizobium meliloti exoZ/exoB fragment of megaplasmid 2: ExoB functions as a UDP-glucose 4-epimerase and ExoZ shows homology to NodX of Rhizobium leguminosarum biovar viciae strain TOM. Mol. Microbiol. 5, 1519–1530.

    CAS  Google Scholar 

  • Felix G, Regenass M, and Boller T 1993. Specific perception of subnanomolar concentrations of chitin fragments by tomato cells. Plant Journal 4, 307–316.

    Article  CAS  Google Scholar 

  • Glucksmann MA, Reuber TL, and Walker GC 1993. Family of glycosyltransferases needed for the synthesis of succinoglycan by Rhizobium meliloti. J. Bacteriol. 175, 7033–7044.

    PubMed  CAS  Google Scholar 

  • Glucksmann MA, Reuber TL, and Walker GC 1993. Genes needed for the modification, polymerization, export, and processing of succinoglycan by Rhizobium meliloti: a model for succinoglycan biosynthesis. J. Bacteriol. 175, 7045–7055

    PubMed  CAS  Google Scholar 

  • Kapp D, Niehaus K, Quandt J, Müller P, and Pühler A 1990. Cooperative action of Rhizobium meliloti nodulation and infection mutants during the process of forming mixed infected alfalfa nodules. The Plant Cell 2, 139–151.

    PubMed  Google Scholar 

  • Leigh JA, Reed JW, Hanks JF, Hirsch AM, and Walker GC 1987. Rhizobium meliloti mutants that fail to succinylate their Calcofluor-binding exopolysaccharide are defective in nodule invasion. Cell 51, 579–587.

    Article  PubMed  CAS  Google Scholar 

  • Leigh JA, Signer ER, and Walker GC 1985. Exopolysaccharide-deficient mutants of Rhizobium meliloti that form ineffective nodules. PNAS 85, 6231–6235.

    Article  Google Scholar 

  • Long S, Reed JW, Himawan J, and Walker GC 1988. Genetic analysis of a cluster of genes required for synthesis of the Calcofluor-binding exopolysaccharide of Rhizobium meliloti. J. Bacteriol. 170, 4239–4248.

    PubMed  CAS  Google Scholar 

  • Müller P, Hynes M, Kapp D, Niehaus K, and Pühler A 1988. Two classes of Rhizobium meliloti infection mutants differ in exopolysaccharide production and in coinoculation properties with nodulation mutants. Mol. Gen. Genet. 211, 17–26.

    Article  Google Scholar 

  • Müller P, Keller M, Weng WM, Quandt J, Arnold W, and Pühler A 1993. Genetic analysis of the Rhizobium meliloti exoYFQ operon: ExoY is homologous to sugar transferases and ExoQ represents a trans-membrane protein. MPMI 6, 55–65.

    Article  PubMed  Google Scholar 

  • Niehaus K, Kapp D, Lorenzen J, Meyer-Gattermann P, Sieben S, and Pühler A 1994. Plant defence in alfalfa pseudonodules induced by an exopolysaccharide (EPS I)-deficient symbiont (Rhizobium meliloti). In Acta Horticulturae 381 Natural Phenols in Plant Resistance. Eds.M Geibel, D Treutter, and W Feucht. pp 258–264. Sellier Druck GmbH, Freising.

    Google Scholar 

  • Niehaus K, Baier R, Kohring B, Flaschel E, and Pühler A 1997. Symbiotic suppression of the Medicago sativa plant defence system by Rhizobium meliloti oligosaccharides. In NATO ASI Series, G 39 Biological Fixation of Nitrogen for Ecology and Sustainable Agriculture. Eds A Legocki, H Bothe, and A Pühler. pp 111–114. Springer-Verlag, Berlin Heidelberg.

    Chapter  Google Scholar 

  • Niehaus K, Albus U, Baier R, Schiene K, Schröder S, and Pühler A 1998. Symbiotic suppression of the Medicago sativa plant defence system by Rhizobium meliloti oligosaccharides. In Biological Nitrogen Fixation for the 21st Century. Eds. C Elmerich, A Kondorosi, and WE Newton. pp 225–226. Kluwer Academic Publishers, Dordrecht.

    Google Scholar 

  • Reed JW, Capage M, and Walger GC 1991. Rhizobium meliloti exoG and exoJ mutations affect the exoX-exoY system for modulation of exopolysaccharide production. J. Bacteriol. 173, 3776–3788.

    PubMed  CAS  Google Scholar 

  • Reuber TL and Walker GC 1993. Biosynthesis of succinoglycan, a symbiotically important exopolysaccharide of Rhizobium meliloti. Cell 74, 269–280.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Niehaus, K., Becker, A., Pühler, A. (1999). Suppression of Plant Defence in the Medicago Sativa (Alfalfa)-Sinorhizobium meliloti Symbiosis. In: Martĺnez, E., Hernández, G. (eds) Highlights of Nitrogen Fixation Research. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4795-2_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4795-2_21

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7172-4

  • Online ISBN: 978-1-4615-4795-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics