Skip to main content

Molecular Data and Polyploid Evolution in Plants

  • Chapter
Molecular Systematics of Plants

Abstract

Polyploidy is a significant force in plant evolution. Approximately 47% to 52% of all angiosperm species are polyploid (V. Grant, 1981). Estimates of the frequency of polyploidy in pteridophytes range from 43.5% for the ferns alone (Vida, 1976) to 95% for pteridophytes as a whole (V. Grant, 1981), suggesting ancient polyploidy in several lineages of pteridophytes. In byrophytes polyploidy is common in mosses, but rare in liverworts (V. Grant, 1981). In contrast to angiosperms, pteridophytes, and bryophytes, polyploidy in gymnosperms is very rare and sporadic. Polyploidy has not been detected in cycads or ginkgo, and only 1.5% of the species of Coniferales are polyploid (Khoshoo, 1959). In the Gnetales, tetraploidy is common in Ephedra and rare or nonexistent in Gnetum and Welwitschia (Delevoryas, 1980).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Appels, R., and Dvorak, J. (1982a) The wheat ribosomal DNA spacer region: its structure and variation in populations and among species. Theor. Appl. Genet. 63, 337–348.

    CAS  Google Scholar 

  • Appels, R., and Dvorak, J. (1982b) Relative rates of divergence of spacer and gene sequences within the rDNA region of species in the Triticeae: implications for the maintenance of homogeneity of a repeated gene family. Theor. Appl. Genet. 63, 361–365.

    Google Scholar 

  • Appels, R., and Honeycutt, R.L. (1986) rDNA: evolution over a billion years. In: DNA Systematics, Vol. II, Plants (ed. S.K. Dutta), CRC Press, Boca Raton, FL, pp. 81–135.

    Google Scholar 

  • Arnheim, N., Krystal, M., Schmickel, R., Wilson, G., Ryder, O., and Zimmer, E. (1980) Molecular evidence for genetic exchanges among ribosomal genes on nonhomologous chromosomes in man and apes. Proc. Natl. Acad. Sci. USA 77, 7323–7327.

    PubMed  CAS  Google Scholar 

  • Bingham, E.T., Cutter, G.L., and Beversdorf, W.D. (1976) Creating genetic variability: tissue culture and chromosome manipulation. In: World Soybean Research (ed. L.D. Hill), Interstate Printers, Danville, IL, pp. 246–261.

    Google Scholar 

  • Bold, H.C., Alexopoulos, C.J., and Delevoryas, T. (1986) Morphology of Plants and Fungi, Harper and Row, New York.

    Google Scholar 

  • Brochmann, C., Borgen, L., and Stedje, B. (1989a) Chromosome numbers and crossing experiments in Nordic populations of Draba (Brassicaceae). In: Biological Approaches and Evolutionary Trends in Plants (abstract), 4th International Symposium of Plant Biosystematics, p. 39.

    Google Scholar 

  • Brochmann, C., Soltis, P.S., and Soltis, D.E. (1989b) Evolutionary trends in Nordic populations of Draba (Brassicaceae). In: Biological Approaches and Evolutionary Trends in Plants (abstract), 4th International Symposium of Plant Biosystematics, p. 39.

    Google Scholar 

  • Clausen, J.D., Keck, D., and Hiesey, W.H. (1945) Experimental studies on the nature of plant species. II. Plant evolution through amphidiploidy and autopolyploidy with examples from the Madiinae. Carnegie Inst. Wash. Publ. 546, 1–174.

    Google Scholar 

  • Berthou, F., Mathieu, C., and Vedel, F. (1983) Chloroplast and mitochondrial DNA variation as an indicator of phylogenetic relationships in the genus Coffea L. Theor. Appl. Genet. 65, 77–84.

    CAS  Google Scholar 

  • Corriveau, J.L., and Coleman, A.W. (1988) Rapid screening method to detect potential biparental inheritance of plastid DNA and results for over 200 angiosperm species. Amer. J. Bot. 75, 1443–1458.

    Google Scholar 

  • Cronquist, A. (1981) An Integrated System of Classification of Flowering Plants, Columbia University Press, New York.

    Google Scholar 

  • Dahlgren, R. (1983) General aspects of angiosperm evolution and macrosystematics. Nordic J. Bot. 3, 119–149.

    Google Scholar 

  • Darlington, C.D. (1932) Recent Advances in Cytology, Churchill, London.

    Google Scholar 

  • Darvey, N.L., and Driscoll, C.J. (1972) Nucleolar behaviour in Triticum. Chromosoma (Berl.) 36, 131–139.

    Google Scholar 

  • Delevoryas, T. (1980) Polyploidy in gymnosperms. In: Polyploidy: Biological Relevance (ed. W.H. Lewis), Plenum Press, New York, pp. 215–218.

    Google Scholar 

  • de Wet, J.M.J. (1980) Origins of polyploids. In: Polyploidy: Biological Relevance (ed. W.H. Lewis), Plenum Press, New York, pp. 3–15.

    Google Scholar 

  • Doebley, J., Renfroe, W., and Blanton, A. (1987) Restriction site variation in the Zea chloroplast genome. Genetics 117, 139–147.

    PubMed  CAS  Google Scholar 

  • Dover, G.A. (1982) Molecular drive: a cohesive mode of species evolution. Nature 229, 111–117.

    Google Scholar 

  • Doyle, J.J., and Beachy, R.N. (1985) Ribosomal gene variation in soybean (Glycine) and its relatives. Theor. Appl. Genet. 70, 369–376.

    CAS  Google Scholar 

  • Doyle, J.J., Beachy, R.N., and Lewis, W.H. (1984) Evolution of rDNA in Claytonia polyploid complexes. In: Plant Biosystematics (ed. W.F. Grant), Academic Press, Ottawa, pp. 321–341.

    Google Scholar 

  • Doyle, J.J., and Brown, A.H.D. (1989) 5S Nuclear ribosomal gene variation in the Glycine tomentella polyploid complex (Leguminosae). Syst. Bot. 14, 398–407.

    Google Scholar 

  • Doyle, J.J., Doyle, J.L., and Brown, A.H.D. (1990a) A chloroplast DNA phylogeny of the wild perennial relatives of the soybean (Glycine subgenus Glycine): congruence with morphological and crossing groups. Evolution 44, 371–389.

    CAS  Google Scholar 

  • Doyle, J.J., Doyle, J.L., and Brown, A.H.D. (1990b) Chloroplast DNA polymorphism and phylogeny in the B genome of Glycine subgenus Glycine (Leguminosae). Amer. J. Bot. 77, 772–782.

    CAS  Google Scholar 

  • Doyle, J.J., Doyle, J.L., Brown, A.H.D., and Grace, J.P. (1990c) Multiple origins of polyploids in the Glycine tabacina complex inferred from chloroplast DNA polymorphism. Proc. Natl. Acad. Sci. USA 87, 714–717.

    PubMed  CAS  Google Scholar 

  • Doyle, J.J., Doyle, J.L., Grace, J.P., and Brown, A.H.D. (1990d) Reproductively isolated polyploid races of Glycine tabacina (Leguminosae) had different chloroplast genome donors. Syst. Bot. 15, 173–181.

    Google Scholar 

  • Doyle, J.J., Soltis, D.E., and Soltis, P.S. (1985) Ribosomal gene variation in Tolmiea, Tellima, and their intergeneric hybrid. Amer. J. Bot. 72, 1388–1391.

    Google Scholar 

  • Doyle, M.J., and Brown, A.H.D. (1985) Numerical analysis of isozyme variation in Glycine tomentella. Biochem. Syst. Ecol. 13, 413–419.

    CAS  Google Scholar 

  • Doyle, M.J., Grant, J., and Brown, A.H.D. (1986) Reproductive isolation between isozyme groups of Glycine tomentella (Leguminosae), and spontaneous doubling in their hybrids. Austral. J. Bot. 34, 523–535.

    Google Scholar 

  • Dunsmuir, P. (1985) The petunia chlorophyll a/b binding protein genes: a comparison of Cab genes from different gene families. Nucleic Acids Res. 13, 2503–2518.

    PubMed  CAS  Google Scholar 

  • Ellis, T.H.N., Davies, D.R., Castleton, J.A., and Bedford, I.D. (1984) The organisation and genetics of rDNA length variants in peas. Chromosoma (Berl.) 91, 74–81.

    CAS  Google Scholar 

  • Ehrendorfer, F. (1980) Polyploidy and distribution. In: Polyploidy: Biological Relevance (ed. W.H. Lewis), Plenum Press, New York, pp. 45–60.

    Google Scholar 

  • Erickson, L.R., Strauss, N.A., and Beversdorf, W.B. (1983) Restriction patterns reveal origins of chloroplast genomes in Brassica amphidiploids. Theor. Appl. Genet. 65, 201–206.

    CAS  Google Scholar 

  • Flavell, R.B. (1986) Ribosomal RNA genes and control of their expression. In: Oxford Surveys of Plant Molecular and Cell Biology, Vol. 3 (ed. B.J. Miflin), Oxford University Press, Oxford, pp. 251–275.

    Google Scholar 

  • Gastony, G.J. (1986) Electrophoretic evidence for the origin of fern species by unreduced spores. Amer. J. Bot. 73, 1563–1569.

    CAS  Google Scholar 

  • Gill, B.S., and Appels, R. (1988) Relationships betweenNor-loci from different Triticeae species. Plant Syst. Evol. 160, 77–89.

    Google Scholar 

  • Goldblatt, P. (1980) Polyploidy in angiosperms: monocotyledons. In: Polyploidy: Biological Relevance (ed. W.H. Lewis), Plenum Press, New York, pp. 219–239.

    Google Scholar 

  • Goldsborough, P.B., Ellis, T.H.N., and Cullis, C.A. (1981) Organization of the 5S RNA genes in flax. Nucleic Acids Res. 9, 5895–5904.

    Google Scholar 

  • Grant, J.E., Brown, A.H.D., and Grace, J.P. (1984) Cytological and isozyme diversity in Glycine tomentella Hayata (Leguminosae). Austral. J. Bot. 32, 665–677.

    CAS  Google Scholar 

  • Grant, V. (1981) Plant Speciation, Columbia University Press, New York.

    Google Scholar 

  • Hadley, H.H., and Hymowitz, T. (1973) Speciation and cytogenetics. In: Soybeans: Improvement, Production, and Uses (ed. B.E. Caldwell), American Society of Agronomists, Madison, WI, pp. 97–116.

    Google Scholar 

  • Harlan, J.R., and de Wet, J.M.J. (1975) On Ö. Winge and a prayer: the origins of polyploidy. Bot. Rev. 41, 361–390.

    Google Scholar 

  • Haufler, C.H., and Soltis, D.E. (1986) Genetic evidence suggests that homosporous ferns with high chromosome numbers are diploid. Proc. Natl. Acad. Sci. USA 83, 4389–4393.

    PubMed  CAS  Google Scholar 

  • Hightower, R.C, and Meagher, R.B. (1985) Divergence and differential expression of soybean actin genes. EMBO J. 4, 1–8.

    PubMed  CAS  Google Scholar 

  • Hilu, K.W. (1988) Identification of the “A” genome of finger millet using chloroplast DNA. Genetics 118, 163–167.

    PubMed  CAS  Google Scholar 

  • Hosaka, K. (1986) Who is the mother of the potato?—restriction endonuclease analysis of chloroplast DNA of cultivated potatoes. Theor. Appl. Genet. 72, 606–618.

    CAS  Google Scholar 

  • Hymowitz, T. (1970) On the domestication of the soybean. Econ. Bot. 24, 408–421.

    Google Scholar 

  • Jessop, C.M., and Sabrahmanyam, N.C. (1984) Nucleolar number variation in Hordeum species; their haploids and interspecific hybrids. Genetica 64, 93–100.

    Google Scholar 

  • Kasha, K.J., and Sadasivaiah, R.S. (1971) Genome relationships between Hordeum vulgare L. and H. bulbosum L. Chromosoma (Berl.) 35, 264–287.

    Google Scholar 

  • Keep, E. (1962) Satellite and nucleolar numbers in hybrids between Ribes nigrum and R. grossularia and in their backcrosses. Canad. J. Genet. Cytol. 4, 206–218.

    Google Scholar 

  • Khoshoo, T.N. (1959) Polyploidy in gymnosperms. Evolution 13, 24–39.

    Google Scholar 

  • Kihara, H., and Ono, T. (1926) Chromosomenzahlen und systematische Gruppierung der Rumex—Arten. Zeit. Zellfrosch. Mikr. Anat. 4, 475–481.

    Google Scholar 

  • King, L.M., and Schaal, B.A. (1989) Ribosomal-DNA variation and distribution in Rudbeckia missouriensis. Evolution 43, 1117–1119.

    Google Scholar 

  • Kirk, J.T.O., and Tilney-Bassett, R.A.E. (1978) The Plastids: Their Chemistry, Structure, Growth, and Inheritance, Elsevier, Amsterdam.

    Google Scholar 

  • Klekowski, Jr., E.J., and Baker, H.G. (1966) Evolutionary significance of polyploidy in the Pteridophyta. Science 135, 305–307.

    Google Scholar 

  • Lee, J.S., and Verma, D.P.S. (1984) Structure and chromosomal arrangement of leghe-moglobin genes in kidney bean suggest divergence in soybean leghemoglobin gene loci following tetraploidization. EMBO J. 3, 2745–2752.

    PubMed  CAS  Google Scholar 

  • Leutwiler, L.S., Meyerowitz, E.M., and Tobin, E.M. (1986) Structure and expression of three light-harvesting chlorophyll a/b-binding protein genes in Arabidopsis thaliana. Nucleic Acids Res. 14, 4051–4076.

    PubMed  CAS  Google Scholar 

  • Levin, D.A. (1983) Polyploidy and novelty in flowering plants. Amer. Natur. 122, 1–25.

    Google Scholar 

  • Lewis, W.H. (1980) Polyploidy in species populations. In: Polyploidy: Biological Relevance (ed. W.H. Lewis), Plenum Press, New York, pp. 103–144.

    Google Scholar 

  • Long, E.O., and Dawid, I.B. (1980) Repeated genes in eukaryotes. Ann. Rev. Biochem. 49, 727–764.

    PubMed  CAS  Google Scholar 

  • Longwell, A.C., and Svihla, G. (1960) Specific chromosomal control of the nucleolus and of the cytoplasm in wheat. Exp’l. Cell Res. 20, 294–312.

    CAS  Google Scholar 

  • Manton, I. (1950) Problems of Cytology and Evolution in the Pteridophyta, Cambridge University Press, London.

    Google Scholar 

  • Martini, G., and Flavell, R.B. (1985) The control of nucleolus volume in wheat; a genetic study at three developmental stages. Heredity 54, 111–120.

    Google Scholar 

  • Martini, G., O’Dell, M., and Flavell, R.B. (1982) Partial inactivation of wheat nucleolus organisers by the nucleolus organiser chromosomes from Aegilops umbellulatus. Chromosoma (Berl.) 84, 687–700.

    Google Scholar 

  • McClintock, B. (1934) The relationship of a particular chromosomal element to the development of the nucleoli in Zea mays. Zeit. Zellforsch, mik Anat. 21, 294–328.

    Google Scholar 

  • Mendiburu, A.O., and Peloquin, S.J. (1976) Sexual polyploidization and depolyploidiza-tion: some terminology and definitions. Theor. Appl. Genet. 48, 137–143.

    Google Scholar 

  • Muller, H.J. (1914) A new mode of segregation in Gregory’s tetraploid primulas. Amer. Natur. 48, 508–512.

    Google Scholar 

  • Muntzing, A. (1936) The evolutionary significance of autopolyploidy. Hereditas 21, 263–378.

    Google Scholar 

  • Navashin, M. (1934) Chromosomal alterations caused by hybridisation and their bearing upon certain genetic problems. Cytologia 5, 169–203.

    Google Scholar 

  • Neale, D.B., Wheeler, N.C., and Allard, R.W. (1986) Paternal inheritance of chloroplast DNA in Douglas fir. Can. J. For. Res. 16, 1152–1154.

    CAS  Google Scholar 

  • Ness, B.D., Soltis, D.E., and Soltis, P.S. (1989) Autopolyploidy in Heuchera micrantha Dougl. (Saxifragaceae). Amer. J. Bot. 76, 614–626.

    Google Scholar 

  • Ogihara, Y., and Tsunewaki, K. (1988) Diversity and evolution of chloroplast DNA in Triticum and Aegilops as revealed by restriction fragment analysis. Theor. Appl. Genet. 76, 321–332.

    CAS  Google Scholar 

  • Ohta, T., and Dover, G.A. (1983) Population genetics of multigene families that are dispersed in two or more chromosomes. Proc. Natl. Acad. Sci. USA 80, 4079–4083.

    PubMed  CAS  Google Scholar 

  • Ownbey, M. (1950) Natural hybridization and amphiploidy in the genus Tragopogon. Amer. J. Bot. 37, 487–499.

    Google Scholar 

  • Ownbey, M., and McCollum, G. (1953) Cytoplasmic inheritance and reciprocal amphiploidy in Tragopogon. Amer. J. Bot. 70, 788–796.

    Google Scholar 

  • Palmer, J.D., Shields, C.R., Cohen, D.B., and Orton, T.J. (1983) Chloroplast DNA evolution and the origin of amphidiploid Brassica. Theor. Appl. Genet. 65, 181–189.

    CAS  Google Scholar 

  • Pichersky, E., Bernatzky, R., Tanksley, S.D., Breidenbach, R.B., Krausen, A.P., and Cashmore, A.R. (1985) Molecular characterization and genetic mapping of two clusters of genes encoding chlorophyll a/b-binding proteins in Lycopersicon esculentum (tomato). Gene 40, 247–258.

    PubMed  CAS  Google Scholar 

  • Pichersky, E., Brock, T.G., Nguyen, D., Hoffman, N.E., Piechulla, B., Tanksley, S.D., and Green, B.R. (1989) A new member of the CAB gene family: structure, expression and chromosomal location of Cab-8, the tomato gene encoding the Type III chlorophyll a/b-binding polypeptide of photosystem I. Plant Mol. Biol. 12, 257–270.

    CAS  Google Scholar 

  • Pichersky, E., Soltis, D.E., and Soltis, P.S. (1990) Defective CAB genes in the genome of a homosporous fern. Proc. Natl. Acad. Sci. USA 87, 195–199.

    PubMed  CAS  Google Scholar 

  • Rafalski, J.A., Wiewiorowski, M., and Soll, D. (1982) Organization and nucleotide sequence of nuclear 5S rRNA genes in yellow lupine (Lupinus luteus). Nucleic Acids Res. 10, 7635–7642.

    PubMed  CAS  Google Scholar 

  • Ranker, T.A., Haufler, C.H., Soltis, P.S., and Soltis, D.E. (1989) Genetic evidence for allopolyploidy in the neotropical fern Hemionitis pinnatifida (Adiantaceae) and the reconstruction of an ancestral genome. Syst. Bot. 14, 439–447.

    Google Scholar 

  • Roose, M.L., and Gottlieb, L.D. (1976) Genetic and biochemical consequences of polyploidy in Tragopogon. Evolution 30, 818–830.

    CAS  Google Scholar 

  • Saghai-Maroof, M.A., Soliman, K., Jorgensen, R.A., and Allard, R.W. (1984) Ribosomal DNA spacer length polymorphisms in barley: Mendelian inheritance, chromosomal location, and population dynamics. Proc. Natl. Acad. Sci. USA 81, 8014–8018.

    PubMed  CAS  Google Scholar 

  • Sears, B.B. (1980) Elimination of plastids during spermatogenesis and fertilization in the plant kingdom. Plasmid 4, 233–255.

    PubMed  CAS  Google Scholar 

  • Sears, B.B. (1983) Genetics and evolution of the chloroplast. Stadler Symp. 15, 119–139.

    CAS  Google Scholar 

  • Singh, R.J., and Hymowitz, T. (1985a) Intra- and interspecific hybridization in the genus Glycine subgenus Glycine Willd.: chromosome pairing and genome relationships. Z. Pflanzenzucht. 95, 289–310.

    Google Scholar 

  • Singh, R.J., and Hymowitz, T. (1985b) The genomic relationships among six wild perennial species of the genus Glycine subgenus Glycine Willd. Theor. Appl. Genet. 71, 221–230.

    Google Scholar 

  • Singh, R.J., Kollipara, K.P., and Hymowitz, T. (1987) Polyploid complexes of Glycine tabacina (Labill.) Benth. and G. tomentella Hayata revealed by cytogenetic analysis. Genome 29, 490–497.

    Google Scholar 

  • Smith, G.P. (1976) Evolution of repeated sequences of unequal crossover. Science 191, 528–535.

    PubMed  CAS  Google Scholar 

  • Snape, J. W., Flavell, R.B., O’Dell, M., Hughes, W.G., and Payne, P.I. (1984) Intrachromosomal mapping of the nucleolar organiser region relative to three marker loci on chromosome IB of wheat (Thticum aestivum). Theor. Appl. Genet. 69, 263–270.

    Google Scholar 

  • Soltis, D.E. (1984) Autopolyploidy in Tolmiea menziesii (Saxifragaceae). Amer. J. Bot. 71, 1171–1174.

    Google Scholar 

  • Soltis, D.E. (1986) Genetic evidence for diploidy in Equisetum. Amer. J. Bot. 73, 908–913.

    CAS  Google Scholar 

  • Soltis, D.E., and Bohm, B.A. (1986) Flavonoid chemistry of diploid and tetraploid cytotypes of Tolmiea menziesii (Saxifragaceae). Syst. Bot. 11, 293–297.

    Google Scholar 

  • Soltis, D.E., and Doyle, J.J. (1987) Ribosomal RNA gene variation in diploid and tetraploid Tolmiea menziesii (Saxifragaceae). Biochem. Syst. Ecol. 15, 75–78.

    Google Scholar 

  • Soltis, D.E., and Rieseberg, L.H. (1986) Autopolyploidy in Tolmiea menziesii (Saxifragaceae): genetic insights from enzyme electrophoresis. Amer. J. Bot. 73, 310–318.

    CAS  Google Scholar 

  • Soltis, D.E., and Soltis, P.S. (1988a) Are lycopods with high chromosome numbers ancient polyploids? Amer. J. Bot. 75, 238–247.

    Google Scholar 

  • Soltis, D.E., and Soltis, P.S. (1988b) Electrophoretic evidence for tetrasomic inheritance in Tolmiea menziesii (Saxifragaceae). Heredity 60, 375–382.

    Google Scholar 

  • Soltis, D.E., and Soltis, P.S. (1989a) Genetic consequences of autopolyploidy in Tolmiea (Saxifragaceae). Evolution 43, 586–594.

    Google Scholar 

  • Soltis, D.E., and Soltis, P.S. (1989b) Polyploidy, breeding systems, and genetic differentiation in homosporous pteridophytes. In: Isozymes in Plant Biology (eds. D.E. Soltis and P.S. Soltis), Dioscorides Press, Portland, OR, pp. 241–258.

    Google Scholar 

  • Soltis, D.E., and Soltis, P.S. (1989c) Tetrasomic inheritance in Heuchera micrantha (Saxifragaceae). J. Heredity 80, 123–126.

    Google Scholar 

  • Soltis, D.E., and Soltis, P.S. (1989d) Allopolyploid speciation in Tragopogon: insights from chloroplast DNA. Amer. J. Bot. 76, 1119–1124.

    CAS  Google Scholar 

  • Soltis, D.E., and Soltis, P.S. (1990a) Chloroplast DNA and nuclear rDNA variation: insights into autopolyploid and allopolyploid evolution. In: Biological Approaches and Evolutionary Trends in Plants (ed. S. Kawano), Academic Press, San Diego, pp. 97–117.

    Google Scholar 

  • Soltis, D.E., and Soltis, P.S. (1990b) Isozyme evidence for ancient polyploidy in primitive angiosperms. Syst. Bot. 15, 328–337.

    Google Scholar 

  • Soltis, D.E., Soltis, P.S., and Ness, B.D. (1989a) Chloroplast DNA variation and multiple origins of autopolyploidy in Heuchera micrantha (Saxifragaceae). Evolution 43, 650–656.

    Google Scholar 

  • Soltis, D.E., Soltis, P.S., Ranker, T.A., and Ness, B.D. (1989b) Chloroplast DNA variation in a wild plant, Tolmiea menziesii. Genetics 121, 819–826.

    PubMed  CAS  Google Scholar 

  • Soltis, P.S., and Soltis, D.E. (1986) Anthocyanin content in diploid and tetraploid cytotypes of Tolmiea menziesii (Saxifragaceae). Syst. Bot. 11, 32–34.

    Google Scholar 

  • Soltis, P.S., and Soltis, D.E. (1988) Electrophoretic evidence for genetic diploidy in Psilotum nudum. Amer. J. Bot. 75, 1667–1671.

    Google Scholar 

  • Soltis, P.S., and Soltis, D.E. (1991) Multiple origins of the allotetraploid Tragopogon mirus (Compositae): rDNA evidence. Syst. Bot. 16, 407–413.

    Google Scholar 

  • Soltis, P.S., Soltis, D.E., and Wolf, P.G. (1991) Allozymic and chloroplast DNA analyses of polyploidy in Polystichum (Dryopteridaceae). I. The origins of P. californicum and P. scopulinum. Syst. Bot. 16, 245–256.

    Google Scholar 

  • Stebbins, G.L. (1947) Types of polyploids: their classification and significance. Adv. Genetics 1, 403–429.

    Google Scholar 

  • Stebbins, G.L. (1971) Chromosomal Evolution in Higher Plants, Edward Arnold, London.

    Google Scholar 

  • Szmidt, A.E., Alden, T., and Hallgren, J.-E. (1987) Paternal inheritance of chloroplast DNA in Larix. Plant Mol. Biol. 9, 59–64.

    CAS  Google Scholar 

  • Takhtajan, A. (1969) Flowering Plants—Origin and Dispersal, Smithsonian Institution Press, Washington, DC.

    Google Scholar 

  • Takhtajan, A. (1980) Outline of the classification of flowering plants (Magnoliophyta). Bot. Rev. 46, 225–359.

    Google Scholar 

  • Thorne, R.F. (1983) Proposed new realignments in the angiosperms. Nordic J. Bot. 3, 85–117.

    Google Scholar 

  • Tindale, M.D., and Craven, L.A. (1988) Three new species of Glycine (Fabaceae: Phaseoleae) from north-western Australia, with notes on amphicarpy in the genus. Austr. Syst. Bot. 1, 399–410.

    Google Scholar 

  • Vida, G. (1976) The role of polyploidy in evolution. In: Evolutionary Biology (eds. V.J. A. Novak and Pacltova), Czechoslovak Academy of Sciences, Prague, pp. 267–304.

    Google Scholar 

  • Wallace, H., and Langridge, W.H.R. (1971) Differential amphiplasty and the control of ribosomal RNA synthesis. Heredity 27, 1–13.

    CAS  Google Scholar 

  • Wendel, J.F. (1989) New World tetraploid cottons contain Old World cytoplasm. Proc. Natl. Acad. Sci. USA 86, 4132–4136.

    PubMed  CAS  Google Scholar 

  • Werth, CR., Guttman, S.I., and Eshbaugh, W.H. (1985a) Electrophoretic evidence of reticulate evolution in the Appalachian Asplenium complex. Syst. Bot. 10, 184–192.

    Google Scholar 

  • Werth, C.R., Guttman, S.I., and Eshbaugh, W.H. (1985b) Recurring origins of allopolyploid species in Asplenium. Science 228, 731–733.

    PubMed  CAS  Google Scholar 

  • Wolf, P.G., Soltis, P.S., and Soltis, D.E. (1989) Tetrasomic inheritance and chromosome pairing behaviour in the naturally occurring autotetraploid Heuchera grossulariifolia (Saxifragaceae). Genome 32, 655–659.

    Google Scholar 

  • Wolf, P.G., Soltis, D.E., and Soltis, P.S. (1990) Chloroplast-DNA and electrophoretic variation in diploid and autotetraploid Heuchera grossulariifolia. Amer. J. Bot. 77, 230–242.

    Google Scholar 

  • Yatskievych, G., Stein, D.B., and Gastony, G.J. (1988) Chloroplast DNA evolution and systematics of Phanerophlebia (Dryopteridaceae) and related fern genera. Proc. Natl. Acad. Sci. USA 85, 2589–2593.

    PubMed  CAS  Google Scholar 

  • Zimmer, E.A., Jupe, E.R., and Walbot, V. (1988) Ribosomal gene structure, variation and inheritance in maize and its ancestors. Genetics 120, 1125–1136.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Pamela S. Soltis Douglas E. Soltis Jeff J. Doyle

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Soltis, P.S., Doyle, J.J., Soltis, D.E. (1992). Molecular Data and Polyploid Evolution in Plants. In: Soltis, P.S., Soltis, D.E., Doyle, J.J. (eds) Molecular Systematics of Plants. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3276-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3276-7_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-412-02241-8

  • Online ISBN: 978-1-4615-3276-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics