Skip to main content

Biosphere-Atmosphere Exchange of Trace Gases in the Tropics: Evaluating the Effects of Land Use Changes

  • Chapter
Global Atmospheric-Biospheric Chemistry

Part of the book series: Environmental Science Research ((ESRH,volume 48))

Abstract

Tropical soils and vegetation represent globally significant sources of a range of atmospheric gases, including CO2, CO, N2O, NO, CH4, and volatile organic compounds. Conversion of tropical forests to agriculture and other uses, and intensification of agricultural practices in both forest and savanna areas are occurring very rapidly; yet the impacts of these land use practices on biogeochemical cycles, trace gas emissions, and atmospheric chemistry are not well understood. We present early results of IGAC’s Biosphere-Atmosphere Trace Gas Exchange in the Tropics (BATGE) Activity that evaluate the importance of tropical land use change on fluxes of a number of gases.

Soils are important sources and sinks for trace gases, especially for oxides of nitrogen. On-going studies in Brazil, Costa Rica, Puerto Rico, and Mexico suggest that conversion of forest to pasture results in elevated soil emissions of nitrogen oxides in the first decade or less after clearing, but that older pastures, unless intensively managed, have lower fluxes than forests. Forest conversion to pasture also diminishes the soil sink strength for methane; in some cases the direction of the flux is reversed and pasture soils become methane sources. Likewise, results from a number of tropical regions suggest that agricultural sites recently converted from native vegetation have elevated fluxes of nitrogen and carbon gases, but that high emissions of nitrogen oxides and reduced uptake of methane in older agricultural systems are maintained only with intensive management and fertilizer use. Moreover, the magnitude of fluxes occurring in response to fertilization depends on soil type and management considerations such as crop type, fertilizer type, application rate, and application methods. The great spatial and temporal variability in trace gas responses to tropical agricultural practices complicates estimates of their importance at regional and global scales.

Few attempts have been made to study vegetation sources and sinks for trace gases in the tropics. It is clear that tropical vegetation can produce large quantities of volatile organic compounds. Forests may be strong sinks for oxidants and odd-nitrogen compounds. Changes in the species composition and structure of vegetation will almost certainly change these system properties; but our ability to predict the magnitude of these changes is severely hampered by a dearth of relevant data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andreae, M.O., A. Chapuis, B. Cros, J. Fontan, G. Helas, C. Justice, Y.J. Kaufman, A. Minga, and D. Nganga, 1992, Ozone and aitken nuclei over equatorial Africa: Airborne observations during DECAFE 88, J. Geophys. Res., 97:6137–6148.

    Article  CAS  Google Scholar 

  • Bakwin, P.S., S.C. Wofsy, S.-M. Fan, M. Keller, S.E. Trumbore and J.M. da Costa, 1990a, Emission of nitric oxide from tropical forest soils and exchange of NO between the forest canopy and atmospheric boundary layers, J. Geophys. Res., 95:16,755–716,764.

    Google Scholar 

  • Bakwin, P.S., S.C. Wofsy and S.-M. Fan, 1990b, Measurements of reactive nitrogen oxides (NOy) within and above a tropical forest canopy in the wet season, J. Geophys. Res., 95:16,765–716,772.

    Google Scholar 

  • Baldocchi, D.D., B.B. Hicks, and P. Camara, 1987, A canopy stomatal resistance model for gaseous depostion to vegetated surfaces, Atmos. Environ., 22:869–884.

    Google Scholar 

  • Bartlett, K.B., P.M. Crill, D.I. Sebacher, R.C. Harriss, J.O. Wilson, and J.M. Melack, 1988, Methane flux from the Central Amazonian floodplain, J. Geophys. Res., 93:1571–1581.

    Article  CAS  Google Scholar 

  • Bartlett, K.B. and R.C. Harriss, 1993, Review and assessment of methane emissions from wetlands, Chemosphere, 26:261–320.

    Article  CAS  Google Scholar 

  • Bolin, B., E.T. Degens, P. Duvignaud, and S. Kempe, 1979, in “The Global Carbon Cycle,” B. Bolin, E.T. Degens, S. Kempe, and S. Kertner (eds.), Wiley, Chichester.

    Google Scholar 

  • Bruenig, E.F., 1990, Oligotrphic forested wetlands in Borneo, in: “Ecosystems of the World 15: Forested Wetlands,” A.E. Lugo, M. Brinson, and S. Brown (eds.), Elsevier, Amsterdam.

    Google Scholar 

  • Censo Agropecuario, 1983.

    Google Scholar 

  • Chanton, J.P. and J.W. Dacey, 1991, Effects of vegetation on methane flux, reservoirs, and carbon isotopic composition, in: “Environmental and Metabolic Controls on Trace Gas Emissions from Plants,” T. Sharkey, E. Holland, and H. Mooney (eds.), Academic Press, New York.

    Google Scholar 

  • Cicerone, R. and R. Oremland, 1988, Biogeochemical aspects of atmospheric methane, Global Biogeochem. Cycles, 2:299–327.

    Article  CAS  Google Scholar 

  • Crosson, P.R. and N.J. Rosenberg, 1990, Strategies for Agriculture, in: “Managing Planet Earth. Readings from Scientific American Magazine,” Freeman and Co., New York.

    Google Scholar 

  • Crutzen, P.J. and M.O. Andreae, 1990, Biomass burning in the tropics: Impact on atmospheric chemistry and biogeochemical cycles, Science, 250:1669–1678.

    Article  PubMed  CAS  Google Scholar 

  • Dacey, J.W., 1981, Pressurized ventilation in the yellow waterlilly, Ecology, 62:1137–1147.

    Article  Google Scholar 

  • Davidson, E.A., P.M. Vitousek, P.A. Matson, R. Riley, G. Garcia-Mendez and J.M. Maass, 1991, Soil emissions of nitric oxide in a seasonally dry tropical forest of Mexico, J. Geophys. Res., 96:15,439–15,445.

    Google Scholar 

  • Delmas, R.A., J. Servant, J.P. Tathy, B. Cros, and M. Labat, 1992, Sources and sinks of methane and carbon dioxide exchanges in the mountain forest in Equatorial Africa, J. Geophys. Res., 97:6169–6179.

    Article  CAS  Google Scholar 

  • Detwiler, R.P. and C.A.S. Hall, 1988, Tropical forests and the global carbon cycle, Science, 239:42–47.

    Article  PubMed  CAS  Google Scholar 

  • Dörr, H., L. Katruff, and I. Levin, 1993, Soil texture parameterization of the methane uptake in aerated soils, Chemosphere, 26:697–713.

    Article  Google Scholar 

  • EPA, 1990, “Greenhouse gas emissions from agricultural ecosystems,” United States Environmental Protection Agency Report, Washington, D.C.

    Google Scholar 

  • Eichner, M.J., 1990, Nitrous oxide emissions from fertilized soils: Summary of the available data, J. Env. Qual., 19:272–280.

    Article  Google Scholar 

  • FAO, 1985, “FAO Fertilizer Yearbook,” United Nations Food and Agriculture Organization, Rome.

    Google Scholar 

  • FAO, 1991, “Forest Resources Assessment 1990 Project,” Forestry N.7, United Nations Food and Agriculture Organization, Rome.

    Google Scholar 

  • Fan, S.M., S.C. Wofsy, P.S. Bakwin, DJ. Jacob, and D.R. Fitzjarrald, 1990, Atmosphere-biosphere exchange of CO2 and O3 in the Central Amazon forest, J. Geophys. Res., 95:16,851–16,864.

    Google Scholar 

  • Fearnside, P.M., 1989, Brazil’s Balbina Dam: Environment versus the legacy of the pharoahs in Amazonia, Environm. Mgt., 13:401–423.

    Google Scholar 

  • Fehsenfeld, F. and 10 others, 1992, Emissions of volatile organic compounds from vegetation and the implications for atmospheric chemistry, Global Bio geochem. Cycles, 6:351–388.

    Article  Google Scholar 

  • Finlayson-Pitts, B.J. and J.N. Pitts, 1986, “Atmospheric Chemistry: Fundamentals and Experimental Techniques,” John Wiley and Sons, New York.

    Google Scholar 

  • Folorunso, O.A. and D.E. Rolston, 1984, Spatial variablity of field-measured denitrification gas fluxes, Soil Sci. Soc. Am. J., 48:1214–1219.

    Article  CAS  Google Scholar 

  • Fung, I., J. John, J. Lerner, E. Matthews, M. Prather, L.P. Steele, and P.J. Fraser, 1991, Three-dimensional model synthesis of the global methane cycle, J. Geophys. Res., 96:13,033–13,065.

    Google Scholar 

  • Garcia-Mendez, G., J.M. Maass, P.A. Matson and P.M. Vitousek, 1991, Nitrogen transformations and nitrous oxide flux in a tropical deciduous forest in Mexico, Oecologia, 88:362–366.

    Article  Google Scholar 

  • Gore, A.J.P. (ed.), 1983, “Mires: Swamp, Bog, Fen, and Moo,” Elsevier, Amsterdam.

    Google Scholar 

  • Goreau, T.J. and W.Z. de Mello, 1988, Tropical deforestation: Some effect on atmospheric chemistry, Ambio, 17:275–281.

    CAS  Google Scholar 

  • Guenther, A.B., R.K. Monson, and R. Fall, 1991, Isoprene and monoterpene emission rate variability: Observations with eucalyptus and emission rate algorithm development, J. Geophys. Res., 96:10,799–10,808.

    Google Scholar 

  • Hao, W.M., D. Scharffe, and P.J. Crutzen, 1988, Production of N2O, CH4, and CO2 from soils in the tropical savanna during the dry season, J. Atm. Chem., 7:93–105.

    Article  CAS  Google Scholar 

  • Harriss, R.C. and D.I. Sebacher, 1981, Methane flux in forested swamps of the southeastern United States, Geophys. Res. Lett., 8:1002–1004.

    Article  CAS  Google Scholar 

  • Harriss, R.C., D.I. Sebacher, K.B. Bartlett, D.S. Bartlett, and P.M. Crill, 1989, Sources of atmospheric methane in the South Florida environment, Global Biogeochem. Cycles, 2:231–243.

    Article  Google Scholar 

  • Hecht, S.B., 1992, Logics of livestock and deforestation: The case of Amazonia, in: “Development or Destruction: The Conversion of Tropical Forest to Pasture in Latin America,” T.E. Downing, S.B. Hecht, H.A. Pearson, and Carmen Garcia-Downing, (eds.), Westview Press, Boulder, Colorado.

    Google Scholar 

  • Houghton, R.A., R.D. Boone, J.R. Fruci, J.E. Hobbie, J.M. Melillo, C.A. Palm, B.J. Peterson, G.R. Shaver, G.M. Woodwell, B. Moore, D. Skole and N. Meyers, 1987, The flux of carbon from terrestrial ecosystems to the atmosphere in 1980 due to changes in land use: geographic distribution of the global flux, Tellus, 39B:122–139.

    Article  CAS  Google Scholar 

  • Houghton, R.A., D.L. Sklole and D.S. Lefkowitz, 1991, Changes in the landscape of Latin America between 1950 and 1985. II. Net release of CO2 to the atmosphere, Forest Ecol. and Mgt., 38:173–199.

    Article  Google Scholar 

  • Janzen, D.H., 1988, Tropical dry forests: The most endangered major tropical ecosystem, in: “Biodiversity,” E.O. Wilson (ed.), National Academy Press, Washington, D.C.

    Google Scholar 

  • Jacob, D.J. and S.C. Wofsy, 1988, Photochemistry of biogenic emissions over the Amzon forest, J. Geophys. Res., 93:1477–1486.

    Article  CAS  Google Scholar 

  • Jacob, D. J. and S.C. Wofsy, 1990, Budgets of reactive nitrogen, hydrocarbons, and ozone over the Amazon forest during the wet season, J. Geophys. Res., 95:16,737–716,754.

    Google Scholar 

  • Johansson, C., H. Rodhe and E. Sanhueza, 1988, Emission of NO in a tropical savanna and cloud forest during the dry season, J. Geophys. Res., 93:7180–7192.

    Article  CAS  Google Scholar 

  • Johansson, C. and E. Sanhueza, 1988, Emission of NO from savanna soils during the rainy season, J. Geophys. Res., 93:14,193–114,198.

    Google Scholar 

  • Kaplan, W.A., S.C. Wofsy, M. Keller, and J.M. da Costa, 1988, Emission of NO and depostion of O3 in a tropical forest system, J. Geophys. Res., 93:1389–1395.

    Article  CAS  Google Scholar 

  • Keller, M., W.A. Kaplan, and S.C. Wofsy, 1986, Emissions of N2O, CH4, and CO2 from tropical forest soils, J. Geophys. Res., 91:11,791–11,802.

    Article  Google Scholar 

  • Keller, M., W. Kaplan, S.C. Wofsy and J.M. da Costa, 1988, Emissions of N2O from tropical forest soils: Response to fertilization with NH4+, NO3- and PO4 -3, J. Geophys. Res., 93:1600–1604.

    Article  CAS  Google Scholar 

  • Keller, M. and R.F. Stallard, 1993, Methane emission by bubbling from Gatun Lake, Panama, J. Geophys. Res., in press.

    Google Scholar 

  • Keller, M. D.J. Jacob, S.C. Wofsy and R.C. Harriss, 1991, Effects of tropical deforestation on global and regional atmospheric chemistry, Climatic Change, 19:139–158.

    Article  CAS  Google Scholar 

  • Keller, M., E. Veldkamp, A.M. Weitz, and W.A. Reiners, 1993, Pasture age effects on soil-atmosphere trace gas exchange in a deforested area of Costa Rica, submitted.

    Google Scholar 

  • Kirchhoff, V.W.J.H. and E.V.A. Marinho, 1990, Surface carbon monoxide measurements in Amazonia, J. Geophys. Res., 95:16,933–16,943.

    Google Scholar 

  • Lerdau, M., 1991, Plant function and biogenic terpene emissions, in: “Environmental and Metabolic Controls on Trace Gas Emissions from Plants,” T. Sharkey, E. Holland, and H. Mooney (eds.), Academic Press, New York.

    Google Scholar 

  • Lobert, J.M., D.H. Scharffe, W.M. Hao and P.J. Crutzen, 1990, Importance of biomass burning in the atmospheric budget of nitrogen-containing trace gases, Nature, 346:552–554.

    Article  CAS  Google Scholar 

  • Luizão, F., P. Matson, G. Livingston, R. Luizao and P.M. Vitousek, 1989, Nitrous oxide flux following tropical land clearing, Global Biogeochem. Cycles, 3:281–285.

    Article  Google Scholar 

  • Liittge, U. and K. Fischer, 1980, Light-dependent net CO-evolution by C3 and C4 plants, Planta, 149:59–63.

    Article  Google Scholar 

  • Martens, C.S. and J.V. Klump, 1980, Biogeochemical cycling in an organic-rich coastal marine basin. 1. Methane sediment-water exchange processes, Geochim. et Cosmoch. Acta, 44:471–490.

    Article  CAS  Google Scholar 

  • Matson, P.A. and P.M. Vitousek, 1987, Cross-system comparisons of soil nitrogen transformations and nitrous oxide flux in tropical forest ecosystems, Global Biogoechem. Cycles, 1:163–170.

    Article  CAS  Google Scholar 

  • Matson, P.A., P.M. Vitousek, J.J. Ewel, M.J. Mazzarino and G.P. Robertson, 1987, Nitrogen transformations following tropical forest felling and burning on a volcanic soil, Ecology, 68:491–502.

    Article  Google Scholar 

  • Matson, P.A., P.M. Vitousek, and D.S. Schimel, 1989, Regional extrapolation of trace gas flux based on soils and ecosystems, in: “Exchange of Trace Gases Between Terrestrial Ecosystems and the Atmosphere,” M.O Andreae and D.S. Schimel (eds.), John Wiley and Sons, New York.

    Google Scholar 

  • Matson, P.A., P.M. Vitousek, G.P. Livingston, and N.A. Swanberg, 1990, Sources of variation in nitrous oxide flux from Amazonian ecosystems, J. Geophys. Res., 95:16,789–16,798.

    Google Scholar 

  • Matson, P.A. and P.M. Vitousek, 1990, Ecosystem approach to a global nitrous oxide budget, Bioscience, 40(9):667–672.

    Article  Google Scholar 

  • Matson, P.A. and P.M. Vitousek, 1993, Biosphere-atmosphere interactions in a tropical deciduous forest ecosystem, in: “The Tropical Deciduous Forest Ecosystem,” H.A. Mooney, E. Medina and S.H. Bullock (eds.), Springer-Verlag, New York, in press.

    Google Scholar 

  • Matthews, E. and I. Fung, 1987, Methane emissions from natural wetlands: Global distribution, area, and environmental characteristics of sources, Global Biogeocheem. Cycles, 1:61–86.

    Article  CAS  Google Scholar 

  • McElroy, M.B. and S.C. Wofsy, 1986, Tropical forests: Interaction with the atmosphere, in: “Tropical Rain Forests and the World Atmosphere,” G.T. Prance (ed.), Westview Press, Boulder, Colorado.

    Google Scholar 

  • Meyer, W.B. and B.L. Turner, II., 1992, Human population growth and global land use/cover change, Annual Rev. of Ecol. and Systemat., 23:39–61.

    Article  Google Scholar 

  • Mosier, A., 1989, Chamber and isotope techniques, in: “Exchange of Trace Gases between Terrestrial Ecosystems and the Atmosphere,” M.O Andreae and D.S. Schimel (eds.), John Wiley and Sons, New York.

    Google Scholar 

  • Mosier, A., D. Schimel, D. Valentine, K. Bronson, and W. Parton, 1991, Methane and nitrous oxide fluxes in native, fertilized, and cultivated grasslands, Nature, 350:330–332.

    Article  CAS  Google Scholar 

  • Müller, J.-F., 1992, Geographical distribution and seasonal variation of surface emissions and deposition velocities of atmospheric trace gases, J. Geophys. Res., 97:3787–3804.

    Article  Google Scholar 

  • Murphy, P.G. and A.E. Lugo, 1986, Ecology of tropical dry forest, Annual Rev. of Ecol. and Systemat., 17:67–88.

    Article  Google Scholar 

  • Naylor, R. and P.A. Matson, 1993, Environmental Impact of Population Growth, EOS, 74:178–179.

    Article  Google Scholar 

  • Neue, H.-U., 1992, Agronomic practices affecting methane fluxes from rice cultivation, Ecolog. Bull. (Copenhagen), 42:174–182.

    CAS  Google Scholar 

  • Rasmussen, R.A. and M.A.K. Khalil, 1988, Isoprene over the Amazon Basin, J. Geophys. Res., 93:1417–1421.

    Article  CAS  Google Scholar 

  • Richter, D.D. and I. Babbar, 1991, Soil diversity in the tropics, Adv. in Ecol. Res., 21:315–389.

    Article  Google Scholar 

  • Rodin, L.E., N.I. Bazilevich and N.N. Rogov, 1975, The productivity of the world’s main ecosystem, in: “Productivity of World Ecosystem,” W. National Academy Press, Washington, D.C.

    Google Scholar 

  • Sanchez, P.A., 1981, Soils of the humid tropics, in: “Blowing in the Wind: Deforestation and Long-Range Implications,” Department of Anthropology (ed.), College of William and Mary, Williamsburg, VA.

    Google Scholar 

  • Sanhueza, E., W.M. Hao, D. Scharffe, L. Donoso and P.J. Crutzen, 1990, N2O and NO emissions from soils of the northern part of the Guayana Shield, Venezuela, J. Geophys. Res., 95:22,481–422,488.

    Google Scholar 

  • Seiler, W., R. Conrad, and D. Scharffe, 1984, Field studies of methane emission from termite nests into the atmosphere and measurements of methane uptake by tropical soils, J. Atm. Chem., 1:171–186.

    Article  CAS  Google Scholar 

  • Shea, C.P., 1988, Shifting to renewable energy, in: “The State of the World 1988,” World Watch Institute, W.W. Norton & Company, New York.

    Google Scholar 

  • Siegel, S.M. and B.Z. Siegel, 1987, Biogenesis of carbon monoxide: Production by fungi and seed plants in the dark, Phytochem., 26:3117–3119.

    Article  CAS  Google Scholar 

  • Steudler, P., R.D. Bowden, J.M. Mellilo, and J.D. Aber, 1989, Influence of nitrogen fertilization on methane uptake in temperate forest soils, Nature, 341:314–316.

    Article  Google Scholar 

  • Stewart, J.W.B., and 11 others, 1989, Extrapolation of flux measurements to regional and global scales, in: “Exchange of Trace Gases between Terrestrial Ecosystems and the Atmosphere,” M.O Andreae and D.S. Schimel (eds.), John Wiley and Sons, New York.

    Google Scholar 

  • Tathy, J.P., B. Cros, R.A. Delmas, A. Marenco, J. Servant, and M. Labat, 1992, Methane emission from flooded forest in Central Africa, J. Geophys. Res., 97:6159–6168.

    Article  CAS  Google Scholar 

  • Thompson, K. and A.C. Hamilton, 1983, Peatlands and swamps of the African continent, in: “Mires: Swamp, Bog, Fen, and Moor,” Gore, A.J.P. (ed.), Elsevier, Amsterdam.

    Google Scholar 

  • Vaghjiani, G.L. and A.R. Ravishankara, 1991, New measurement of the rate coefficient for the reaction of OH with methane, Nature, 350:406–409.

    Article  CAS  Google Scholar 

  • Veldkamp, E., A.M. Weitz, I.G. Staritsky, and E.J. Huising, 1992, Deforestation trends in the Atlantic zone of Costa Rica: A case study, Land Degrad. and Rehab., 3:71–84.

    Article  Google Scholar 

  • Vitousek, P.M. and R.L. Sanford, Jr., 1986, Nutrient cycling in moist tropical forest, Annual Rev. of Ecol. and Systernal, 17:137–161.

    Article  Google Scholar 

  • Vitousek, P.M. and P.A. Matson, 1988, Nitrogen transformations in tropical forest soils, Soil Biol. Biochem., 20:361–367.

    Article  CAS  Google Scholar 

  • Vitousek, P.M., P.A. Matson, C. Volkmann, J.M. Maass and G. Garcia-Mendez, 1989, Nitrous oxide flux from seasonally-dry tropical forests: A survey, Global Biogeochem. Cycles, 3:375–382.

    Article  CAS  Google Scholar 

  • Vitousek, P.M. and P.A. Matson, 1993, Agriculture, the global nitrogen cycle, and trace gas flux, “Proceedings of the 10th International Symposium on Environmental Biogeochemistry,” August 19-23, 1991, in press.

    Google Scholar 

  • Watson, R.T., H. Rodhe, H. Oeschger and U. Siegenthaler, 1990, Greenhouse gases and aerosols, in: “Climate Change: The IPCC Scientific Assessment,” J.T. Houghton, G.J. Jenkins and J.J. Ephrams (eds.), Cambridge University Press, Cambridge.

    Google Scholar 

  • Williams, E.J. and F.C. Fehsenfeld, 1991, Measurement of soil nitrogen oxide emissions in three north American ecosystems, J. Geophys. Res., 96:1033–1042.

    Article  Google Scholar 

  • Williams, E.J., G.L. Hutchinson and F.C. Fehsenfeld, 1992, NOX and N2O emissions from soil, Global Biogeochem. Cycles, 6:351–388.

    Article  CAS  Google Scholar 

  • Whiting, G.J., J.P. Chanton, D.S. Bartlett, J.D. Happell, 1991, Relationships between CH4 emission, biomass, and CO2 exchange in a subtropical grassland, J. Geophys. Res., 96:13,067–113,071.

    Google Scholar 

  • Zimmerman, P.R., J.P. Greenberg, and C.E. Westberg, 1988, Measurments of atmospheric hydrocarbons and biogenic emission fluxes in the Amazon boundary layer, J. Geophys. Res., 93:1407–1416.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media New York

About this chapter

Cite this chapter

Keller, M., Matson, P.A. (1994). Biosphere-Atmosphere Exchange of Trace Gases in the Tropics: Evaluating the Effects of Land Use Changes. In: Prinn, R.G. (eds) Global Atmospheric-Biospheric Chemistry. Environmental Science Research, vol 48. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2524-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2524-0_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6075-9

  • Online ISBN: 978-1-4615-2524-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics