Skip to main content

Analytical Ultracentrifugation: A Valuable Tool to Recognize Crystallization Conditions of Proteins

  • Chapter
  • 385 Accesses

Abstract

The use of analytical ultracentrifugation to elucidate crystallization conditions for proteins is discussed. The methods are based on careful enhancement of the protein concentration by sedimentation, leading to a partial formation of associates. The results can be monitored either from the broadening of the moving boundary in a Schlieren pattern or from the considerable concentration increase near the cell base. The conditions under which highly charged proteins are able to undergo a self-association process (nucleation) as prerequisite for crystallization can be determined from the second virial coefficient, to which the excluded volume and the net charge mainly contribute. Crystallization experiments are successful when the repulsive forces of charged proteins are screened by addition of neutral salts and the net charge contribution becomes smaller than that of the excluded volume. Protein crystallization can be considered as an open association event with binding constants in the millimolar range. An exact description of single steps by using solutions of the Lamm differential equation is not possible because of the unknown association kinetics and the large number of parameters that must be estimated. However, based on fitting of simulated concentration profiles we can exclude a statistical binding mode for nucleation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Jankaric and S.-H. Kim, Sparse matrix sampling: a screening method for crystallization of proteins, J. Appl Crystal. 24:409 (1991).

    Article  Google Scholar 

  2. E.A. Stura and I.A. Wilson, Applications of the streak seeding technique in protein crystallization, J. Crystal Growth 110:270 (1991).

    Article  CAS  Google Scholar 

  3. S.D. Durbin and G. Feher, Studies of crystal-growth mechanisms of proteins by electron microscopy, J. Mol Biol. 212:763(1990).

    Article  CAS  Google Scholar 

  4. S.D. Durbin and W.E. Carlson, Lysozyme crystal-growth studied by atomic force microscopy, J. Crystal Growth 122:71 (1992).

    Article  CAS  Google Scholar 

  5. M. Jullien, M.P. Crosio, S. Baudet-Nessler, F. Merola, and J.C. Brochon, Evidence for a dimeric intermediate on the crystallization pathway of ribonuclease-A, Acta Crystallographica D 50:398 (1994).

    CAS  Google Scholar 

  6. M.L. Pusey, Estimation of the initial equilibrium-constants in the formation of tetragonal lysozyme nuclei, J. Crystal Growth 110:60 (1991).

    Article  CAS  Google Scholar 

  7. M. Skouri, M. Delsanti, J.P. Munch, B. Lorber, and R. Giegé, Dynamic light scattering-studies of the aggregation of lysozyme under crystallization conditions, Febs- Letters 295:84 (1991).

    Article  CAS  Google Scholar 

  8. Y. Georgalis, A. Zouni, and W. Saenger, Dynamics of protein precrystallization cluster formation , J. Crystal Growth 118:360(1992).

    Article  CAS  Google Scholar 

  9. Y. Georgalis, A. Zouni, W. Eberstein, and W. Saenger, Formation dynamics of protein precrystallization fractal clusters, J. Crystal Growth 126:245 (1993).

    Article  CAS  Google Scholar 

  10. A.J. Malkin, J. Cheung, and A. McPherson, Crystallization of satellite tobacco mosaic-virus. 1. Nucleation phenomena, J. Crystal Growth 126:544 (1993).

    Article  CAS  Google Scholar 

  11. A.J. Malkin and A. McPherson, Crystallization of satellite tobacco mosaic virus. 2. Postnucleation events,J Crystal Growth 126:555 (1993).

    Article  CAS  Google Scholar 

  12. A. George and W.W. Wilson, Predicting protein crystallization from a dilute solution property, Acta Cryst.D 50:361 (1994).

    Article  CAS  Google Scholar 

  13. D.F. Rosenbaum and C.F. Zukowski, Protein interactions and crystallization, J. Cryst. Growth 169:752 (1996).

    Article  CAS  Google Scholar 

  14. F. Boue, F. Lefaucheux, M.C. Robert, and I. Rosenman, Small-angle neutron-scattering study of lysozyme solutions, J. Crystal Growth 133:246 (1993).

    Article  CAS  Google Scholar 

  15. N. Niimura, Y. Minezaki, M. Ataka, and T. Katsura, Aggregation in supersaturated lysozyme solution studied by time-resolved small angle neutron scattering, J. Crystal Growth 154:136 (1995).

    Article  CAS  Google Scholar 

  16. Y. Minezaki, N. Niimura, M. Ataka, and T. Katsura, Small-angle neutron-scattering from lysozyme solutions in unsaturated and supersaturated states, Biophys. Chem. 58:355 (1996).

    Article  CAS  Google Scholar 

  17. P. Todd, S.K. Sikdar, C. Walker, and Z.R. Korszun, Application of dewatering to the controlled crystallization of biological macromolecules and organic-compounds, J. Crystal Growth 110:283 (1991).

    Article  CAS  Google Scholar 

  18. J. Behlke and A. Knespel, Observation of precrystallization aggregation in protein solutions during centrifugation, J. Crystal Growth 158:388 (1996).

    Article  CAS  Google Scholar 

  19. A.M. Lenhoff, P.E. Pjura, J.G. Dilmore, and T.S. Godlewski, Ultracentrifugal crystallization of proteins - transport-kinetic modeling, and experimental behavior of catalase, J. Crystal Growth 180:113 (1997).

    Article  CAS  Google Scholar 

  20. H. Fujita, Mathematical Theory of Sedimentation Analysis. Academic Press, New York (1962).

    Google Scholar 

  21. L.A. Holladay, An approximate solution of the Lamm equation, Biophys. Chem. 10:187 (1979).

    Article  CAS  Google Scholar 

  22. J.S. Philo, Measuring sedimentation, diffusion, and molecular weights of small molecules by direct fitting of sedimentation velocity concentration profiles, in: Modern Analytical Ultracentrifugation, T. M. Schuster and T. M. Laue, eds., Birkhäuser, Boston (1994).

    Google Scholar 

  23. J.S. Philo, An improved function for fitting sedimentation velocity data for low-molecular weight solutes, Biophys. J. 72:435 (1997).

    Article  CAS  Google Scholar 

  24. J. Behlke and O. Ristau, Molecular mass determination by sedimentation velocity experiments and direct fitting of the concentration profiles, Biophys. J. 72:428 (1997).

    Article  CAS  Google Scholar 

  25. J. Behlke and O. Ristau, An improved approximate solution of the Lamm equation for the simultaneous estimation of sedimentation and diffusion coefficients from sedimentation velocity experiments, Biophys. Chem. 70:133 (1998).

    Article  CAS  Google Scholar 

  26. J.M. Claverie, H. Dreux, and R. Cohen, Sedimentation of generalized systems of interacting particles. I. Solution of systems of complete Lamm equations, Biopolymers 14:1685 (1975).

    Article  CAS  Google Scholar 

  27. B. Demeler and H. Saber, Determination of molecular-parameters by fitting sedimentation data to finite element solutions of the Lamm equation, Biophys. J. 74:444 (1998).

    Article  CAS  Google Scholar 

  28. P. Schuck, Sedimentation analysis of noninteracting and self-associating solutes using numerical - solutions of the Lamm equation, Biophys. J. 75:1503 (1998).

    Article  CAS  Google Scholar 

  29. H. Fujita and V.J. MacCosham, Extension of sedimentation to molecules of intermediates sizes, J. Chem.Phys. 30:291 (1959).

    Article  CAS  Google Scholar 

  30. P.R. Wills and D.J. Winzor, in: Analytical Ultracentrifugation in Biochemistry and Polymer Science, S. E. Harding, A. J. Rowe, J. C. Horton, eds., Royal Society, Cambridge, U.K. (1992).

    Google Scholar 

  31. V.V. Barynin and W.R. Melik-Adamyan, The ultracentrifugation protein crystallization mechanism, Kristallografiya 27:981 (1982).

    CAS  Google Scholar 

  32. J. Behlke and O. Ristau, Analysis of the thermodynamic non-ideality by sedimentation equilibrium experiments, Biophys. Chem. 76:13 (1999).

    Article  CAS  Google Scholar 

  33. V. Mikol, E. Hirsch, and R. Giegé, Diagnostic of precipitant for biomacromolecular crystallization by quasi-elastic light-scattering, J. Mol. Biol. 213:187 (1990).

    Article  CAS  Google Scholar 

  34. J. Wyman and S.J. Gill, Binding and Linkage, University Science Books, Mill Valley, CA (1990).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Behlke, J., Ristau, O. (2001). Analytical Ultracentrifugation: A Valuable Tool to Recognize Crystallization Conditions of Proteins. In: Regel, L.L., Wilcox, W.R. (eds) Processing by Centrifugation. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0687-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0687-4_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5195-5

  • Online ISBN: 978-1-4615-0687-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics