Skip to main content

Sperm Motility: Patterns and Regulation

  • Chapter
Book cover Introduction to Mammalian Reproduction

Abstract

Spermatozoa are the only cells destined to be exported from the body. Thus, motility is an essential property of fertile spermatozoa. It enables ejaculated spermatozoa to traverse the female reproductive tract and reach the site of fertilization; it is also essential for penetration of the outer investments of the oocyte including the zona pellucida. This chapter will describe the following aspects of mammalian sperm motility: structure of the flagellum, development of motility in the epididymis, changes in sperm movement patterns following ejaculation and during fertilization, biochemical mechanisms regulating sperm kinetic activity, methods to quantitate sperm motility, and a brief outline of the methods available to alter sperm motility in vitro.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gibbons I.R. Cillia and flagellaofeukaryotes. J Cell Biol 1981; 91:107s–124s

    Article  PubMed  CAS  Google Scholar 

  2. Satir, P. “Basis of Flagellar Motility in Spermatozoa: Current Status.” In The Spermatozoon, D.W. Fawcet, M. Bedford, eds. Urban and Schwarzenberg, 1979. pp 81–90

    Google Scholar 

  3. Porter M.E., Sale W.S. The 9+2 axoneme anchors multiple inter-arm dyneins and a network of kinases and phosphatases that control motility. J Cell Biol 2000; 151:F37–F42

    Article  PubMed  CAS  Google Scholar 

  4. Gibbons I.R. Introduction: dynein ATPase. Cell Motility 1982; Supplement 1:87–93

    Article  Google Scholar 

  5. Lindemann C.B., Kanous K.S. A model for flagellar motility. Int Rev of Cytology 1987; 173:1–73

    Article  Google Scholar 

  6. Fawcett D.W. The mammalian spermatozoon. Dev Biol 1975; 44:394–436

    Article  PubMed  CAS  Google Scholar 

  7. Fawcett D.W. A comparative view of sperm ultrastructure. Biol Reprod 1970; Supplement 2:90–127

    Article  PubMed  CAS  Google Scholar 

  8. Eddy E.M., O’Brian D.A. “The Spermatozoon,” In Physiology of Reproduction, E. Knobil, J.D. Neill, eds. NY: Raven Press, 1993, pp 29–78

    Google Scholar 

  9. Bedford J.M. “Maturation, Transport, and Fate of Spermatozoa in the Epididymis.” In Handbook of Physiology and Endocrinology, Volume V, 1975, pp 303–313

    Google Scholar 

  10. Orgebin-Crist M.-C. Sperm maturation in rabbit epididymis. Nature 1967; 216:816–818

    Article  PubMed  CAS  Google Scholar 

  11. Bedford J.M., Hoskins D.D. “The Mammalian Spermatozoon: Morphology, Biochemistry and Physiology.” In Marshall’s Physiology of Reproduction, G.E. Lamming, ed. Edinburgh, London, Melbourne, New York: Churchill Livingstone, 1990, pp 379.

    Google Scholar 

  12. Pariset C.C., Feinberg J.M.F., Dacheux J.L., Weinman, S.J. Changes in calmodulin level and cAMP-dependent protein kinase activity during epididymal maturation of ram spermatozoa. J Reprod Fert 1985; 74:102–112.

    Article  Google Scholar 

  13. Lindemann C.B., Kanous K.S. Regulation of mammalian sperm motility. Arch Androl 1989;23:1–22

    Article  PubMed  CAS  Google Scholar 

  14. Yeung C.H. Effects of cyclic AMP on the motility of mature and immature hamster epididymal spermatozoa studied by reactivation of the demembranated cells. Gamete Res 1984; 9:99–114

    Article  CAS  Google Scholar 

  15. Mohri H., Yanagimachi R. Characteristics of motor apparatus in testicular, epididymal and ejaculated spermatozoa. Exper Cell Res 1980; 127:191–196

    Article  CAS  Google Scholar 

  16. Hoskins D., Stephens D., Hall M. Cyclic adenosine 3’:5’-monophosphate and protein kinase levels in developing bovine spermatozoa. J Reprod Fert 1974; 37:131–133

    Article  CAS  Google Scholar 

  17. Vijayaraghavan S., Critchlow L.M., Hoskins D.D. Evidence for a role for cellular alkalinization in the cyclic adenosine 3’,5’-monophosphate-mediated initiation of motility in bovine caput spermatozoa. Biol Reprod 1985; 32:489–500

    Article  PubMed  CAS  Google Scholar 

  18. Vijayaraghavan S., Hoskins D.D. Changes in the mitochondrial calcium influx and efflux properties are responsible for the decline in sperm calcium during epididymal maturation. Mol Reprod Dev 1990; 25:186–194

    Article  PubMed  CAS  Google Scholar 

  19. Hoskins D., Hall M., Munsterman D. Induction of motility in immature bovine spermatozoa by cyclic AMP phosphodiesterase inhibitors and seminal plasma. Biol Reprod 1975; 13:168–176

    Article  PubMed  CAS  Google Scholar 

  20. Usselman M.C., Cone R.A. Rat sperm are mechanically immobilized in the caudal epididymis by “immobilin,” a high molecular weight glycoprotein. Biol Reprod 1983; 29:1241–1253

    Article  PubMed  CAS  Google Scholar 

  21. Acott T.S., Carr D.W. Inhibition of bovine spermatozoa by caudal epididymal fluid: ii. interaction of pH and a quiescence factor. Biol Reprod 1984; 30:926–935

    Article  PubMed  CAS  Google Scholar 

  22. Carr D.W., Acott T.S. Inhibition of bovine spermatozoa by caudal epididymal fluid: i. studies of a sperm motility quiescence factor. Biol Reprod 1984; 30:913-925

    Article  PubMed  CAS  Google Scholar 

  23. Mann, T., Lutwak-Mann, C. “Male Reproductive Function and the Composition of Semen. In MaleRreproductive Function and Semen. NY: Springer Verlag, 1981, pp 1– 34.

    Chapter  Google Scholar 

  24. Yanagimachi R. “Mammalian Fertilization.” In The Physiology of Reproduction, E. Knobil, J.D. Neill, eds. NY: Raven Press Ltd., 1994, pp 189-378.

    Google Scholar 

  25. Katz D.F., Yanagimachi R. Movement characteristics of hamster and guinea pig spermatoz oa upon attachment to the zona pellucida. Biol Reprod 1981; 25:785-791

    Article  PubMed  CAS  Google Scholar 

  26. Katz D.F., Yanagimachi R., Dresdner R.D. Movement characteristics and power output of guinea-pig and hamster spermatozoa in relation to activation. J Reprod Fert 1978; 52:167-172

    Article  CAS  Google Scholar 

  27. Katz D.F. Characteristics of sperm motility. Ann NY Acad Sci 1991; 637:409–423

    Article  PubMed  CAS  Google Scholar 

  28. Buck J., Sinclair M.L., Schapal L., Cann M.J., Levin L.R. Cytosolic adenylyl cyclase defines a unique signaling molecule in mammals. Proc Natl Acad Sci USA 1999; 96:79–84

    Article  PubMed  CAS  Google Scholar 

  29. Chen Y., Cann M.J., Litvin T.N., Iourgenko V., Sinclair M.L., Levin L.R., Buck J. Soluble adenylyl cyclase as an evolutionarily conserved bicarbonate sensor. Science 2000; 289:559–560

    Article  Google Scholar 

  30. Okamura N., Tajima Y., Onoe S., Sugita Y. Purification of bicarbonate-sensitive sperm adenylylcyclase by 4-acetamido-4’-isothiocyanostilbene-2,2’-disulfonic acid affinity chromatography. J Biol Chem 1991; 266:17754–17759

    PubMed  CAS  Google Scholar 

  31. Cohen, P. “Classification of Protein-Serine/Threonine Phosphatases: Identification and Quantitation in Cell Extracts.” In Methods in Enzymology, Vol. 201, Chapter 33, T. Hunter, B.M. Sefton, eds. NY: Academic Press, Inc., 1991.

    Google Scholar 

  32. Vijayaraghavan S., Stephens D.T., Trautman K., Smith G.D., Khatra B., da Cruz E., Silva E.F., Greengard P. Sperm Motility development in the epididymis is associated with decreased glycogen synthase kinase-3 and protein phosphatase 1 activity. Biol Reprod 1996; 54:709–718

    Article  PubMed  CAS  Google Scholar 

  33. Smith G.D., Wolf D.P., Trautman K.C., da Cruz E., Silva E.F., Greengard P., Vijayaraghavan S. Primate sperm contain protein phosphatase 1, a biochemical mediator of motility. Biol Reprod 1996; 54:719–27.

    Article  PubMed  CAS  Google Scholar 

  34. Smith G.D., Wolf D.P., Trautman K.C., Vijayaraghavan S. Motility potential of macaque epididymal sperm: the role of protein phosphatase and glycogen synthase kinase-3 activities. J Androl 2000; 20:47–53.

    Google Scholar 

  35. Stephens D.T., Hickman R., Hoskins D.D. Description, validation and performance characteristics of a new computer automated sperm motility analysis system. Biol Reprod 1988; 38:577–586

    Article  PubMed  CAS  Google Scholar 

  36. Stephens, D.T., Hoskins, D.D., Controls of Sperm Motility: Biological and Clinical Aspects. Boca Raton: CRC Press, Inc., 1990, pp 251–260.

    Google Scholar 

  37. Mortimer S.T. A critical review of the physiological importance and analysis of sperm movement in mammals. Hum Reprod Update 1997; 5:403–439

    Article  Google Scholar 

  38. Vijayaraghavan S., Hoskins D.D. Regulation of bovine sperm motility and cyclic adenosine 3’, 5’-monophosphate by adenosine and its analogues. Biol Reprod 1986; 34:468–477.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Vijayaraghavan, S. (2003). Sperm Motility: Patterns and Regulation. In: Tulsiani, D.R.P. (eds) Introduction to Mammalian Reproduction. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0273-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0273-9_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4998-3

  • Online ISBN: 978-1-4615-0273-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics