Skip to main content

White Matter Injury in Global Cerebral Ischemia

  • Chapter
  • First Online:
White Matter Injury in Stroke and CNS Disease

Part of the book series: Springer Series in Translational Stroke Research ((SSTSR,volume 4))

Abstract

In chronic cerebral hypoperfusion due to aging, global cerebral ischemia after cardiac arrest, acute and chronic hypoxia in asymptomatic stroke, and diffuse axonal injury after traumatic brain injury, white matter lesions occur not only as a result of secondary degeneration caused by neuronal injuries in the gray matter, but also as a direct consequence of the primary ischemic insults. Not enough attention has been directed to the molecular and cellular mechanisms of white matter injuries in humans. Failures in past stroke therapyclinical trials are partly attributed to misrepresentation of the relevance of white matter to human brain pathology in the preclinical data. Most rodent models either ignore white matter's contribution to the injury process and recovery, or inadequately account for this contribution due to a significantly lower proportion of white matter in the rodent brain compared to the human brain. Future development of effective therapies should place an equal emphasis on gray and white matter injuries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arai K, Lo EH (2009) Experimental models for analysis of oligodendrocyte pathophysiology in stroke. Exp Transl Stroke Med 1:6

    Article  PubMed  Google Scholar 

  • Arbelaez A, Castillo M, Mukherji SK (1999) Diffusion-weighted MR imaging of global cerebral anoxia. AJNR Am J Neuroradiol 20:999–1007

    CAS  PubMed  Google Scholar 

  • Berger T, Walz W, Schnitzer J, Kettenmann H (1992) Gaba- and glutamate-activated currents in glial cells of the mouse corpus callosum slice. J Neurosci Res 31:21–27

    Article  CAS  PubMed  Google Scholar 

  • Büki A, Siman R, Trojanowski JQ, Povlishock JT (1999) The role of calpain-mediated spectrin proteolysis in traumatically induced axonal injury. J Neuropathol Exp Neurol 58:365–375

    Article  PubMed  Google Scholar 

  • Carty ML, Wixey JA, Colditz PB, Buller KM (2008) Post-insult minocycline treatment attenuates hypoxia-ischemia-induced neuroinflammation and white matter injury in the neonatal rat: a comparison of two different dose regimens. Int J Dev Neurosci 26:477–485

    Article  CAS  PubMed  Google Scholar 

  • Chatterton JE, Awobuluyi M, Premkumar LS, Takahashi H, Talantova M, Shin Y, Cui J, Tu S, Sevarino KA, Nakanishi N, Tong G, Lipton SA, Zhang D (2002) Excitatory glycine receptors containing the nr3 family of nmda receptor subunits. Nature 415:793–798

    Article  CAS  PubMed  Google Scholar 

  • Chen XH, Johnson VE, Uryu K, Trojanowski JQ, Smith DH (2009) A lack of amyloid beta plaques despite persistent accumulation of amyloid beta in axons of long-term survivors of traumatic brain injury. Brain Pathol 19:214–223

    Article  PubMed  Google Scholar 

  • Choi SP, Park HK, Park KN, Kim YM, Ahn KJ, Choi KH, Lee WJ, Jeong SK (2008) The density ratio of grey to white matter on computed tomography as an early predictor of vegetative state or death after cardiac arrest. Emerg Med J 25:666–669

    Article  CAS  PubMed  Google Scholar 

  • Deng Y, Thompson BM, Gao X, Hall ED (2007) Temporal relationship of peroxynitrite-induced oxidative damage, calpain-mediated cytoskeletal degradation and neurodegeneration after traumatic brain injury. Exp Neurol 205:154–165

    Article  CAS  PubMed  Google Scholar 

  • Desmond DW (2002) Cognition and white matter lesions. Cerebrovasc Dis 13(Suppl 2):53–57

    Article  PubMed  Google Scholar 

  • Dewar D, Dawson D (1995) Tau protein is altered by focal cerebral ischaemia in the rat: an immunohistochemical and immunoblotting study. Brain Res 684:70–78

    Article  CAS  PubMed  Google Scholar 

  • Dewar D, Yam P, McCulloch J (1999) Drug development for stroke: importance of protecting cerebral white matter. Eur J Pharmacol 375:41–50

    Article  CAS  PubMed  Google Scholar 

  • Dewar D, Underhill SM, Goldberg MP (2003) Oligodendrocytes and ischemic brain injury. J Cerebr Blood Flow Metabol 23:263–274

    Article  Google Scholar 

  • Els T, Kassubek J, Kubalek R, Klisch J (2004) Diffusion-weighted mri during early global cerebral hypoxia: a predictor for clinical outcome? Acta Neurol Scand 110:361–367

    Article  PubMed  Google Scholar 

  • Erkinjuntti T, Roman G, Gauthier S (2004) Treatment of vascular dementia-evidence from clinical trials with cholinesterase inhibitors. J Neurol Sci 226:63–66

    Article  PubMed  Google Scholar 

  • Follett PL, Rosenberg PA, Volpe JJ, Jensen FE (2000) Nbqx attenuates excitotoxic injury in developing white matter. J Neurosci 20:9235–9241

    CAS  PubMed  Google Scholar 

  • Gennarelli TA, Thibault LE, Adams JH, Graham DI, Thompson CJ, Marcincin RP (1982) Diffuse axonal injury and traumatic coma in the primate. Ann Neurol 12:564–574

    Article  CAS  PubMed  Google Scholar 

  • Gitler D, Spira ME (1998) Real time imaging of calcium-induced localized proteolytic activity after axotomy and its relation to growth cone formation. Neuron 20:1123–1135

    Article  CAS  PubMed  Google Scholar 

  • Gladstone DJ, Black SE, Hakim AM (2002) Toward wisdom from failure: lessons from neuroprotective stroke trials and new therapeutic directions. Stroke 33:2123–2136

    Article  PubMed  Google Scholar 

  • Goldin A, Beckman JA, Schmidt AM, Creager MA (2006) Advanced glycation end products: sparking the development of diabetic vascular injury. Circulation 114:597–605

    Article  CAS  PubMed  Google Scholar 

  • Gultekin SH, Smith TW (1994) Diffuse axonal injury in craniocerebral trauma. A comparative histologic and immunohistochemical study. Arch Pathol Lab Med 118:168–171

    CAS  PubMed  Google Scholar 

  • Heurteaux C, Bertaina V, Widmann C, Lazdunski M (1993) K+ channel openers prevent global ischemia-induced expression of c-fos, c-jun, heat shock protein, and amyloid beta-protein precursor genes and neuronal death in rat hippocampus. Proc Natl Acad Sci USA 90: 9431–9435

    Article  CAS  PubMed  Google Scholar 

  • Hewlett KA, Corbett D (2006) Delayed minocycline treatment reduces long-term functional deficits and histological injury in a rodent model of focal ischemia. Neuroscience 141:27–33

    Article  CAS  PubMed  Google Scholar 

  • Hirko AC, Dallasen R, Jomura S, Xu Y (2008) Modulation of inflammatory responses after global ischemia by transplanted umbilical cord matrix stem cells. Stem Cells 26:2893–2901

    Article  PubMed  Google Scholar 

  • Honda F, Imai H, Ishikawa M, Kubota C, Shimizu T, Fukunaga M, Saito N (2006) Cilostazol attenuates gray and white matter damage in a rodent model of focal cerebral ischemia. Stroke 37:223–228

    Article  CAS  PubMed  Google Scholar 

  • Imai H, Masayasu H, Dewar D, Graham DI, Macrae IM (2001) Ebselen protects both gray and white matter in a rodent model of focal cerebral ischemia. Stroke 32:2149–2154

    Article  CAS  PubMed  Google Scholar 

  • Imai H, McCulloch J, Graham DI, Masayasu H, Macrae IM (2002) New method for the quantitative assessment of axonal damage in focal cerebral ischemia. J Cerebr Blood Flow Metabol 22:1080–1089

    Article  CAS  Google Scholar 

  • Inamasu J, Miyatake S, Nakatsukasa M, Koh H, Yagami T (2011) Loss of gray-white matter discrimination as an early ct sign of brain ischemia/hypoxia in victims of asphyxial cardiac arrest. Emerg Radiol 18:295–298

    Article  PubMed  Google Scholar 

  • Irving EA, Yatsushiro K, McCulloch J, Dewar D (1997) Rapid alteration of tau in oligodendrocytes after focal ischemic injury in the rat: involvement of free radicals. J Cerebr Blood Flow Metabol 17:612–622

    Article  CAS  Google Scholar 

  • Irving EA, Bentley DL, Parsons AA (2001) Assessment of white matter injury following prolonged focal cerebral ischaemia in the rat. Acta Neuropathol 102:627–635

    CAS  PubMed  Google Scholar 

  • Johnson VE, Stewart W (2012) Smith DH. Axonal pathology in traumatic brain injury, Exp Neurol

    Google Scholar 

  • Kamide T, Kitao Y, Takeichi T, Okada A, Mohri H, Schmidt AM, Kawano T, Munesue S, Yamamoto Y, Yamamoto H, Hamada J, Hori O (2012) Rage mediates vascular injury and inflammation after global cerebral ischemia. Neurochem Int 60:220–228

    Article  CAS  PubMed  Google Scholar 

  • Káradóttir R, Cavelier P, Bergersen LH, Attwell D (2005) Nmda receptors are expressed in oligodendrocytes and activated in ischaemia. Nature 438:1162–1166

    Article  PubMed  Google Scholar 

  • Kubo K, Nakao S, Jomura S, Sakamoto S, Miyamoto E, Xu Y, Tomimoto H, Inada T, Shingu K (2009) Edaravone, a free radical scavenger, mitigates both gray and white matter damages after global cerebral ischemia in rats. Brain Res 1279:139–146

    Article  CAS  PubMed  Google Scholar 

  • Lee EJ, Lee MY, Chen HY, Hsu YS, Wu TS, Chen ST, Chang GL (2005) Melatonin attenuates gray and white matter damage in a mouse model of transient focal cerebral ischemia. J Pineal Res 38:42–52

    Article  CAS  PubMed  Google Scholar 

  • Liachenko S, Tang P, Hamilton RL, Xu Y (1998) A reproducible model of circulatory arrest and remote resuscitation in rats for NMR investigation. Stroke 29:1229–1238, discussion 1238-1229

    Article  CAS  PubMed  Google Scholar 

  • Liachenko S, Tang P, Hamilton RL, Xu Y (2001) Regional dependence of cerebral reperfusion after circulatory arrest in rats. J Cerebr Blood Flow Metabol 21:1320–1329

    Article  CAS  Google Scholar 

  • Liachenko S, Tang P, Xu Y (2003) Deferoxamine improves early postresuscitation reperfusion after prolonged cardiac arrest in rats. J Cerebr Blood Flow Metabol 23:574–581

    Article  CAS  Google Scholar 

  • Lin B, Ginsberg MD, Busto R (2001) Hyperglycemic but not normoglycemic global ischemia induces marked early intraneuronal expression of beta-amyloid precursor protein. Brain Res 888:107–116

    Article  CAS  PubMed  Google Scholar 

  • Liu K, Mori S, Takahashi HK, Tomono Y, Wake H, Kanke T, Sato Y, Hiraga N, Adachi N, Yoshino T, Nishibori M (2007) Anti-high mobility group box 1 monoclonal antibody ameliorates brain infarction induced by transient ischemia in rats. FASEB J 21:3904–3916

    Article  CAS  PubMed  Google Scholar 

  • Luyt CE, Galanaud D, Perlbarg V, Vanhaudenhuyse A, Stevens RD, Gupta R, Besancenot H, Krainik A, Audibert G, Combes A, Chastre J, Benali H, Laureys S, Puybasset L (2012) Neuro imaging for coma E, recovery C. Diffusion tensor imaging to predict long-term outcome after cardiac arrest: a bicentric pilot study. Anesthesiology 117:1311–1321

    Article  PubMed  Google Scholar 

  • Madden DJ, Bennett IJ, Burzynska A, Potter GG, Chen NK, Song AW (1822) Diffusion tensor imaging of cerebral white matter integrity in cognitive aging. Biochimica et Biophysica Acta 2012:386–400

    Google Scholar 

  • Manning SM, Talos DM, Zhou C, Selip DB, Park HK, Park CJ, Volpe JJ, Jensen FE (2008) Nmda receptor blockade with memantine attenuates white matter injury in a rat model of periventricular leukomalacia. J Neurosci 28:6670–6678

    Article  CAS  PubMed  Google Scholar 

  • Matute C (2006) Oligodendrocyte nmda receptors: a novel therapeutic target. Trends Mol Med 12: 289–292

    Article  CAS  PubMed  Google Scholar 

  • Matute C (2011) Glutamate and atp signalling in white matter pathology. J Anat 219:53–64

    Article  CAS  PubMed  Google Scholar 

  • Maxwell WL, Watt C, Pediani JD, Graham DI, Adams JH, Gennarelli TA (1991) Localisation of calcium ions and calcium-atpase activity within myelinated nerve fibres of the adult guinea-pig optic nerve. J Anat 176:71–79

    CAS  PubMed  Google Scholar 

  • Maxwell WL, Domleo A, McColl G, Jafari SS, Graham DI (2003) Post-acute alterations in the axonal cytoskeleton after traumatic axonal injury. J Neurotrauma 20:151–168

    Article  PubMed  Google Scholar 

  • McCracken E, Fowler JH, Dewar D, Morrison S, McCulloch J (2002) Grey matter and white matter ischemic damage is reduced by the competitive ampa receptor antagonist, spd 502. J Cerebr Blood Flow Metabol 22:1090–1097

    Article  CAS  Google Scholar 

  • Metter RB, Rittenberger JC, Guyette FX, Callaway CW (2011) Association between a quantitative ct scan measure of brain edema and outcome after cardiac arrest. Resuscitation 82:1180–1185

    Article  PubMed  Google Scholar 

  • Micu I, Jiang Q, Coderre E, Ridsdale A, Zhang L, Woulfe J, Yin X, Trapp BD, McRory JE, Rehak R, Zamponi GW, Wang W, Stys PK (2006) Nmda receptors mediate calcium accumulation in myelin during chemical ischaemia. Nature 439:988–992

    CAS  PubMed  Google Scholar 

  • Miyamoto E, Tomimoto H, Nakao Si S, Wakita H, Akiguchi I, Miyamoto K, Shingu K (2001) Caudoputamen is damaged by hypocapnia during mechanical ventilation in a rat model of chronic cerebral hypoperfusion. Stroke 32:2920–2925

    Article  CAS  PubMed  Google Scholar 

  • Miyamoto E, Nakao S, Tomimoto H, Wakita H, Yamada M, Masuzawa M, Takahira K, Sakamoto S, Shingu K (2004) Ketamine attenuates hypocapnia-induced neuronal damage in the caudoputamen in a rat model of chronic cerebral hypoperfusion. Neurosci Lett 354:26–29

    Article  CAS  PubMed  Google Scholar 

  • Mustafa AG, Singh IN, Wang J, Carrico KM, Hall ED (2010) Mitochondrial protection after traumatic brain injury by scavenging lipid peroxyl radicals. J Neurochem 114:271–280

    CAS  PubMed  Google Scholar 

  • Nizri E, Hamra-Amitay Y, Sicsic C, Lavon I, Brenner T (2006) Anti-inflammatory properties of cholinergic up-regulation: a new role for acetylcholinesterase inhibitors. Neuropharmacology 50:540–547

    Article  CAS  PubMed  Google Scholar 

  • Okonkwo DO, Povlishock JT (1999) An intrathecal bolus of cyclosporin a before injury preserves mitochondrial integrity and attenuates axonal disruption in traumatic brain injury. J Cerebr Blood Flow Metabol 19:443–451

    Article  CAS  Google Scholar 

  • Pantoni L (2010) Cerebral small vessel disease: from pathogenesis and clinical characteristics to therapeutic challenges. Lancet Neurol 9:689–701

    Article  PubMed  Google Scholar 

  • Pantoni L, Garcia JH (1997) Pathogenesis of leukoaraiosis: a review. Stroke 28:652–659

    Article  CAS  PubMed  Google Scholar 

  • Pantoni L, Garcia JH, Gutierrez JA (1996) Cerebral white matter is highly vulnerable to ischemia. Stroke 27:1641–1646, discussion 1647

    Article  CAS  PubMed  Google Scholar 

  • Patneau DK, Wright PW, Winters C, Mayer ML, Gallo V (1994) Glial cells of the oligodendrocyte lineage express both kainate- and ampa-preferring subtypes of glutamate receptor. Neuron 12:357–371

    Article  CAS  PubMed  Google Scholar 

  • Pavlov VA, Tracey KJ (2005) The cholinergic anti-inflammatory pathway. Brain Behav Immun 19:493–499

    Article  CAS  PubMed  Google Scholar 

  • Pluta R, Kida E, Lossinsky AS, Golabek AA, Mossakowski MJ, Wisniewski HM (1994) Complete cerebral ischemia with short-term survival in rats induced by cardiac arrest. I. Extracellular accumulation of Alzheimer's beta-amyloid protein precursor in the brain. Brain Res 649:323–328

    Article  CAS  PubMed  Google Scholar 

  • Povlishock JT, Buki A, Koiziumi H, Stone J, Okonkwo DO (1999) Initiating mechanisms involved in the pathobiology of traumatically induced axonal injury and interventions targeted at blunting their progression. Acta Neurochir Suppl 73:15–20

    CAS  PubMed  Google Scholar 

  • Salter MG, Fern R (2005) Nmda receptors are expressed in developing oligodendrocyte processes and mediate injury. Nature 438:1167–1171

    Article  CAS  PubMed  Google Scholar 

  • Schäbitz WR, Li F, Fisher M (2000) The N-methyl-d-aspartate antagonist cns 1102 protects cerebral gray and white matter from ischemic injury following temporary focal ischemia in rats. Stroke 31:1709–1714

    Article  PubMed  Google Scholar 

  • Schmidt R, Scheltens P, Erkinjuntti T, Pantoni L, Markus HS, Wallin A, Barkhof F, Fazekas F (2004) White matter lesion progression: a surrogate endpoint for trials in cerebral small-vessel disease. Neurology 63:139–144

    Article  CAS  PubMed  Google Scholar 

  • Schmidt R, Grazer A, Enzinger C, Ropele S, Homayoon N, Pluta-Fuerst A, Schwingenschuh P, Katschnig P, Cavalieri M, Schmidt H, Langkammer C, Ebner F, Fazekas F (2011) Mri-detected white matter lesions: do they really matter? J Neural Transm 118:673–681

    Article  PubMed  Google Scholar 

  • Storozheva ZI, Proshin AT, Sherstnev VV, Storozhevykh TP, Senilova YE, Persiyantseva NA, Pinelis VG, Semenova NA, Zakharova EI, Pomytkin IA (2008) Dicholine salt of succinic acid, a neuronal insulin sensitizer, ameliorates cognitive deficits in rodent models of normal aging, chronic cerebral hypoperfusion, and beta-amyloid peptide-(25–35)-induced amnesia. BMC Pharmacol 8:1

    Article  PubMed  Google Scholar 

  • Strich S (1961) Shearing of nerve fibres as a cause of brain damage due to head injury: a pathological study of twenty cases. Lancet 278:443–448

    Article  Google Scholar 

  • Stys PK (1995) Protective effects of antiarrhythmic agents against anoxic injury in cns white matter. J Cerebr Blood Flow Metabol 15:425–432

    Article  CAS  Google Scholar 

  • Stys PK (1998) Anoxic and ischemic injury of myelinated axons in cns white matter: from mechanistic concepts to therapeutics. J Cerebr Blood Flow Metabol 18:2–25

    Article  CAS  Google Scholar 

  • Stys PK, Lipton SA (2007) White matter nmda receptors: an unexpected new therapeutic target? Trends Pharmacol Sci 28:561–566

    Article  CAS  PubMed  Google Scholar 

  • Stys PK, Waxman SG, Ransom BR (1992) Ionic mechanisms of anoxic injury in mammalian cns white matter: role of na+ channels and na(+)-ca2+ exchanger. J Neurosci 12:430–439

    CAS  PubMed  Google Scholar 

  • Takahashi S, Higano S, Ishii K, Matsumoto K, Sakamoto K, Iwasaki Y, Suzuki M (1993) Hypoxic brain damage: cortical laminar necrosis and delayed changes in white matter at sequential MR imaging. Radiology 189:449–456

    CAS  PubMed  Google Scholar 

  • Tayeb HO, Yang HD, Price BH, Tarazi FI (2012) Pharmacotherapies for alzheimer's disease: beyond cholinesterase inhibitors. Pharmacol Ther 134:8–25

    Article  CAS  PubMed  Google Scholar 

  • Tekkök SB, Goldberg MP (2001) Ampa/kainate receptor activation mediates hypoxic oligodendrocyte death and axonal injury in cerebral white matter. J Neurosci 21:4237–4248

    PubMed  Google Scholar 

  • Tomimoto H, Wakita H, Akiguchi I, Nakamura S, Kimura J (1994) Temporal profiles of accumulation of amyloid beta/a4 protein precursor in the gerbil after graded ischemic stress. J Cerebr Blood Flow Metabol 14:565–573

    Article  CAS  Google Scholar 

  • Torbey MT, Selim M, Knorr J, Bigelow C, Recht L (2000) Quantitative analysis of the loss of distinction between gray and white matter in comatose patients after cardiac arrest. Stroke 31: 2163–2167

    Article  CAS  PubMed  Google Scholar 

  • Tsuruta R, Fujita M, Ono T, Koda Y, Koga Y, Yamamoto T, Nanba M, Shitara M, Kasaoka S, Maruyama I, Yuasa M, Maekawa T (2010) Hyperglycemia enhances excessive superoxide anion radical generation, oxidative stress, early inflammation, and endothelial injury in forebrain ischemia/reperfusion rats. Brain Res 1309:155–163

    Article  CAS  PubMed  Google Scholar 

  • Ueno Y, Zhang N, Miyamoto N, Tanaka R, Hattori N, Urabe T (2009) Edaravone attenuates white matter lesions through endothelial protection in a rat chronic hypoperfusion model. Neuroscience 162:317–327

    Article  CAS  PubMed  Google Scholar 

  • Vicente E, Degerone D, Bohn L, Scornavaca F, Pimentel A, Leite MC, Swarowsky A, Rodrigues L, Nardin P, de Almeida LM, Gottfried C, Souza DO, Netto CA, Goncalves CA (2009) Astroglial and cognitive effects of chronic cerebral hypoperfusion in the rat. Brain Res 1251:204–212

    Article  CAS  PubMed  Google Scholar 

  • Wakita H, Tomimoto H, Akiguchi I, Kimura J (1994) Glial activation and white matter changes in the rat brain induced by chronic cerebral hypoperfusion: an immunohistochemical study. Acta Neuropathol 87:484–492

    Article  CAS  PubMed  Google Scholar 

  • Wakita H, Tomimoto H, Akiguchi I, Kimura J (1995) Protective effect of cyclosporin a on white matter changes in the rat brain after chronic cerebral hypoperfusion. Stroke 26:1415–1422

    Article  CAS  PubMed  Google Scholar 

  • Wakita H, Tomimoto H, Akiguchi I, Kimura J (1998) Dose-dependent, protective effect of fk506 against white matter changes in the rat brain after chronic cerebral ischemia. Brain Res 792: 105–113

    Article  CAS  PubMed  Google Scholar 

  • Wakita H, Tomimoto H, Akiguchi I, Lin JX, Miyamoto K, Oka N (1999) A cyclooxygenase-2 inhibitor attenuates white matter damage in chronic cerebral ischemia. Neuroreport 10:1461–1465

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Yushmanov VE, Liachenko SM, Tang P, Hamilton RL, Xu Y (2002) Late reversal of cerebral perfusion and water diffusion after transient focal ischemia in rats. J Cerebr Blood Flow Metabol 22:253–261

    Article  Google Scholar 

  • Wang J, Zhang HY, Tang XC (2010) Huperzine a improves chronic inflammation and cognitive decline in rats with cerebral hypoperfusion. J Neurosci Res 88:807–815

    CAS  PubMed  Google Scholar 

  • Watanabe T, Zhang N, Liu M, Tanaka R, Mizuno Y, Urabe T (2006) Cilostazol protects against brain white matter damage and cognitive impairment in a rat model of chronic cerebral hypoperfusion. Stroke 37:1539–1545

    Article  CAS  PubMed  Google Scholar 

  • Weil ZM (2012) Ischemia-induced hyperglycemia: consequences, neuroendocrine regulation, and a role for rage. Horm Behav 62:280–285

    Article  CAS  PubMed  Google Scholar 

  • Weiss N, Galanaud D, Carpentier A, Naccache L, Puybasset L (2007) Clinical review: prognostic value of magnetic resonance imaging in acute brain injury and coma. Crit Care 11:230

    Article  PubMed  Google Scholar 

  • White ML, Zhang Y, Helvey JT, Omojola MF (2013) Anatomical patterns and correlated mri findings of non-perinatal hypoxic-ischaemic encephalopathy. Br J Radiol 86:20120464

    Article  CAS  PubMed  Google Scholar 

  • Wijdicks EF, Campeau NG, Miller GM (2001) MR imaging in comatose survivors of cardiac resuscitation. AJNR Am J Neuroradiol 22:1561–1565

    CAS  PubMed  Google Scholar 

  • Xu Y, Liachenko S, Tang P (2002) Dependence of early cerebral reperfusion and long-term outcome on resuscitation efficiency after cardiac arrest in rats. Stroke 33:837–843

    Article  PubMed  Google Scholar 

  • Xu Y, Liachenko SM, Tang P, Chan PH (2009) Faster recovery of cerebral perfusion in sod1-overexpressed rats after cardiac arrest and resuscitation. Stroke 40:2512–2518

    Article  PubMed  Google Scholar 

  • Yam PS, Takasago T, Dewar D, Graham DI, McCulloch J (1997) Amyloid precursor protein accumulates in white matter at the margin of a focal ischaemic lesion. Brain Res 760:150–157

    Article  CAS  PubMed  Google Scholar 

  • Yam PS, Dewar D, McCulloch J (1998) Axonal injury caused by focal cerebral ischemia in the rat. J Neurotrauma 15:441–450

    Article  CAS  PubMed  Google Scholar 

  • Yam PS, Dunn LT, Graham DI, Dewar D, McCulloch J (2000) Nmda receptor blockade fails to alter axonal injury in focal cerebral ischemia. J Cerebr Blood Flow Metabol 20:772–779

    Article  CAS  Google Scholar 

  • Zhang J, Takahashi HK, Liu K, Wake H, Liu R, Maruo T, Date I, Yoshino T, Ohtsuka A, Mori S, Nishibori M (2011) Anti-high mobility group box-1 monoclonal antibody protects the blood-brain barrier from ischemia-induced disruption in rats. Stroke 42:1420–1428

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

  The authors would like to acknowledge the support from the National Institutes of Health (R01NS036124) and from the Department of Anesthesiology at the University of Pittsburgh.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Xu Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Nakao, S., Xu, Y. (2014). White Matter Injury in Global Cerebral Ischemia. In: Baltan, S., Carmichael, S., Matute, C., Xi, G., Zhang, J. (eds) White Matter Injury in Stroke and CNS Disease. Springer Series in Translational Stroke Research, vol 4. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-9123-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-9123-1_9

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-9122-4

  • Online ISBN: 978-1-4614-9123-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics