Skip to main content

Superorganismic Behavior via Human Computation

  • Chapter
  • First Online:
Handbook of Human Computation

Abstract

In a future world with pervasive Human Computation (HC), there may be profound effects on how humanity functions at multiple levels from individual behaviors to species/wide changes in evolutionary development. What would such an HC/shaped human society look like? This hypothetical society would be the result of successful adaptations that provide both increased benefit to the high/level facilitators of large-scale computations as well as sufficient incentives to individuals to participate in those computations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Amazon.com, Inc. (2005) Amazon mechanial turk. http://www.mturk.com/

  • Anderson C, Theraulaz G, Deneubourg JL (2002) Self-assemblages in insect societies. Insectes Sociaux 49(2):99–110. doi:10.1007/s00040-002-8286-y

    Google Scholar 

  • André JB, Peeters C, Doums C (2001) Serial polygyny and colony genetic structure in the monogynous queenless ant Diacamma cyaneiventre. Behav Ecol Sociobiol 50(1):72–80. doi:10.1007/s002650100330

    Google Scholar 

  • Baratte S, Cobb M, Peeters C (2006) Reproductive conflicts and mutilation in queenless Diacamma ants. Anim Behav 72(2):305–311. doi:10.1016/j.anbehav.2005.10.025

    Google Scholar 

  • Beach CB, McMurry FM (eds) (1914) The new student’s reference work for teachers, students and families. FE Compton, Chicago

    Google Scholar 

  • Beckers R, Deneubourg JL, Goss S, Pasteels JM (1990) Collective decision making through food recruitment. Insectes Sociaux 37(3):258–267. doi:10.1007/BF02224053

    Google Scholar 

  • Beckers R, Deneubourg JL, Goss S (1992a) Trail laying behaviour during food recruitment in the ant Lasius niger (L.). Insectes Sociaux 39(1):59–72. doi:10.1007/BF01240531

    Google Scholar 

  • Beckers R, Deneubourg JL, Goss S (1992b) Trails and U-turns in the selection of a path by the ant Lasius niger. J Theor Biol 159(4):397–415. doi:10.1016/S0022-5193(05)80686-1

    Google Scholar 

  • Berman S, Lindsey Q, Sakar MS, Kumar V, Pratt SC (2010) Study of group food retrieval by ants as a model for multi-robot collective transport strategies. In: Proceedings of robotics: science and systems, Zaragoza

    Google Scholar 

  • Berman S, Lindsey Q, Sakar MS, Kumar V, Pratt SC (2011) Experimental study and modeling of group retrieval in ants as an approach to collective transport in swarm robotic systems. Proc IEEE 99(9):1470–1481. doi:10.1109/JPROC.2011.2111450

    Google Scholar 

  • Beshers SN, Fewell JH (2001) Models of division of labor in social insects. Annu Rev Entomol 46:413–440. doi:10.1146/annurev.ento.46.1.413

    Google Scholar 

  • Bhadra A, Gadagkar R (2008) We know that the wasps ’know’: cryptic successors to the queen in Ropalidia marginata. Biol Lett 4(6):634–637. doi:10.1098/rsbl.2008.0455

    Google Scholar 

  • Bhadraa A, Iyera PL, Sumanaa A, Deshpandea SA, Ghosha S, Gadagkar R (2007) How do workers of the primitively eusocial wasp Ropalidia marginata detect the presence of their queens? J Theor Biol 246(3):574–582. doi:10.1016/j.jtbi.2007.01.007

    Google Scholar 

  • Birattari M, Di Caro G, Dorigo M (2002) Toward the formal foundation of ant programming. In: Dorigo M, Di Caro G, Sampels M (eds) Proceedings of the third international workshop on ant algorithms (ANTS 2002), Brussels, pp 39–72. doi:10.1007/3-540-45724-0_16

  • Bonabeau E, Dorigo M, Theraulaz G (1999) Swarm intelligence: from natural to artificial systems. Oxford University Press, Oxford

    MATH  Google Scholar 

  • Bonabeau E, Theraulaz G, Deneubourg JL (1998) Group and mass recruitment in ant colonies: the influence of contact rates. J Theor Biol 195(2):157–166. doi:10.1006/jtbi.1998.0789

    Google Scholar 

  • Brady SG (2003) Evolution of the army ant syndrome: the origin and long-term evolutionary stasis of a complex of behavioral and reproductive adaptations. Proc Natl Acad Sci USA 100(11):6575–6579. doi:10.1073/pnas.1137809100

    Google Scholar 

  • Burd M (2000) Foraging behaviour of Atta cephalotes (leaf-cutting ants): an examination of two predictions for load selection. Anim Behav 60(6):781–788. doi:10.1006/anbe.2000.1537

    Google Scholar 

  • Buschinger A (2011) Queen polymorphism in an Australian ant, Monomorium cf. rubriceps Mayr, 1876 (Hymenoptera: Formicidae). Myrmecol News 15:63–66

    Google Scholar 

  • Calderone NW, Page RE (1996) Temporal polyethism and behavioural canalization in the honey bee, Apis mellifera. Anim Behav 51(3):631–643. doi:10.1006/anbe.1996.0068

    Google Scholar 

  • Camazine S, Deneubourg JL, Franks NR, Sneyd J, Theraulaz G, Bonabeau E (2001) Self-organization in biological systems. Princeton University Press, Princeton

    Google Scholar 

  • Cargel RA, Rinderer TE (2004) Unusual queen cell construction and destruction in Apis mellifera from far-eastern Russia. J Apic Res 43(4):188–190

    Google Scholar 

  • Creative Commons (2013a) Attribution 2.0 Generic (CC BY 2.0). http://creativecommons.org/licenses/by/2.0/

  • Creative Commons (2013b) Attribution 2.5 Generic (CC BY 2.5). http://creativecommons.org/licenses/by/2.5/

  • Creative Commons (2013c) Attribution 3.0 Unported (CC BY 3.0). http://creativecommons.org/licenses/by/3.0/

  • Cuvillier-Hot V, Gadagkar R, Peeters C, Cobb M (2002) Regulation of reproduction in a queenless ant: aggression, pheromones and reduction in conflict. Proc R Soc B 269(1497):1471–2954. doi:10.1098/rspb.2002.1991

    Google Scholar 

  • Delsuc F (2003) Army ants trapped by their evolutionary history. PLoS Biol 1(2):e37. doi:10.1371/journal.pbio.0000037

    Google Scholar 

  • de Biseau JC, Deneubourg JL, Pasteels JM (1991) Collective flexibility during mass recruitment in the ant Myrmica sabuleti (Hymenoptera: Formicidae). Psyche 98(4):323–336. doi:10.1155/1991/38402

    Google Scholar 

  • Denny AJ, Franks NR, Powell S, Edwards KJ (2004) Exceptionally high levels of multiple mating in an army ant. Naturwissenschaften 91(8):396–399. doi:10.1007/s00114-004-0546-4

    Google Scholar 

  • Deshpande SA, Sumana A, Surbeck M, Gadagkar R (2006) Wasp who would be queen: a comparative study of two primitively eusocial species. Curr Sci 91(3):332–336

    Google Scholar 

  • Detrain C, Deneubourg JL (2008) Collective decision-making and foraging patterns in ants and honeybees, vol 35. Academic, Amsterdam/Boston, pp 123–173. doi:10.1016/S0065-2806(08)00002-7

    Google Scholar 

  • Dornhaus A, Holley JA, Pook VG, Worswick G, Franks NR (2008) Why do not all workers work? colony size and workload during emigrations in the ant Temnothorax albipennis. Behav Ecol Sociobiol 63(1):43–51. doi:10.1007/s00265-008-0634-0

    Google Scholar 

  • Dorigo M, Birattari M, Stützle T (2006) Ant colony optimization: artificial ants as a computational intelligence technique. IEEE Comput Intell Mag 1(4):28–39. doi:10.1109/MCI.2006.329691

    Google Scholar 

  • Dorigo M, Di Caro G, Gambardella LM (1999) Ant algorithms for discrete optimization. Artif Life 5(2):137–172. doi:10.1162/106454699568728

    Google Scholar 

  • Dorigo M, Maniezzo V, Colorni A (1996) Ant System: optimization by a colony of cooperating agents. IEEE Trans Syst Man Cybern Part B: Cybern 26(1):29–41. doi:10.1109/3477.484436

    Google Scholar 

  • Dussutour A, Beekman M, Nicolis SC, Meyer B (2009) Noise improves collective decision-making by ants in dynamic environments. Proc R Soc B 276(1677):4353–4361. doi:10.1098/rspb.2009.1235

    Google Scholar 

  • Dussutour A, Fourcassié V, Helbing D, Deneubourg JL (2004) Optimal traffic organization in ants under crowded conditions. Nature 428:70–73. doi:10.1038/nature02345

    Google Scholar 

  • Farji-Brener AG, Amador-Vargas S, Chinchilla F, Escobar S, Cabrera S, Herrera MI, Sandoval C (2010) Information transfer in head-on encounters between leaf-cutting ant workers: food, trail condition or orientation cues? Anim Behav 79(2):343–349. doi:10.1016/j.anbehav.2009.11.009

    MATH  Google Scholar 

  • Feigenbaum J, Shenker S (2002) Distributed algorithmic mechanism design: recent results and future directions. In: Proceedings of the 6th international workshop on discrete algorithms and methods for mobile computing and communication, Atlanta, pp 1–13. doi:10.1145/570810.570812

  • Fersch R, Buschinger A, Heinze J (2000) Queen polymorphism in the australian ant Monomorium sp.10. Insectes Sociaux 47(3):280–284. doi:10.1007/PL00001715

    Google Scholar 

  • Fewell JH (2003) Social insect networks. Science 301(5641):1867–1870. doi:10.1126/science.1088945

    Google Scholar 

  • Fourcassié V, Dussutour A, Deneubourg JL (2010) Ant traffic rules. J Exp Biol 213(14):2357–2363. doi:10.1242/jeb.031237

    Google Scholar 

  • Franks NR, Gomez N, Goss S, Deneubourg JL (1991) The blind leading the blind in army ant raid patterns: testing a model of self-organization (Hymenoptera: Formicidae). J Insect Behav 4(4):583–607. doi:10.1007/BF01048072

    Google Scholar 

  • Franks NR, Richardson T (2006) Teaching in tandem-running ants. Nature 439:153. doi:10.1038/439153a

    Google Scholar 

  • Franks NR, Tofts C (1994) Foraging for work: how tasks allocate workers. Anim Behav 48(2):470–472. doi:10.1006/anbe.1994.1261

    Google Scholar 

  • Fujisawa R, Dobata S, Kubota D, Imamura H, Matsuno F (2008) Dependency by concentration of pheromone trail for multiple robots. In: Dorigo M, Birattari M, Blum C, Clerc M, Stüzle T, Winfield AFT (eds) Proceedings of the 6th international conference on ant colony optimization and swarm intelligence (ANTS 2008), Brussels

    Google Scholar 

  • Gadau J, Gertsch PJ, Heinze J, Pamilo P, Hölldobler B (1998) Oligogyny by unrelated queens in the carpenter ant, Camponotus ligniperdus. Behav Ecol Sociobiol 44(1):23–33. doi:10.1007/s002650050511

    Google Scholar 

  • Ganeshaiah KN, Veena T (1991) Topology of the foraging trails of Leptogenys processionalis: why are they branched? Behav Ecol Sociobiol 29(4):263–270. doi:10.1007/BF00163983

    Google Scholar 

  • Ghose T (2013) Human takeover by machines may be closer than we think. http://science.nbcnews.com/_news/2013/05/07/18109236-human-takeover-by-machines-may-be-closer-than-we-think

  • Google (2009) reCAPTCHA. http://www.google.com/recaptcha

  • Gordon DM (1996) The organization of work in social insect colonies. Nature 380:121–124. doi:10.1038/380121a0

    Google Scholar 

  • Gordon DM (2010) Ant encounters: interaction networks and colony behavior. Princeton University Press, Princeton

    Google Scholar 

  • Gordon DM, Holmes S, Nacu S (2008) The short-term regulation of foraging in harvester ants. Behav Ecol 19(1):217–222. doi:10.1093/beheco/arm125

    Google Scholar 

  • Gordon DM, Paul RE, Thorpe K (1993) What is the function of encounter patterns in ant colonies? Anim Behav 45(6):1083–1100. doi:10.1006/anbe.1993.1134

    Google Scholar 

  • Gotoh A, Sameshima S, Tsuji K, Matsumoto T, Miura T (2005) Apoptotic wing degeneration and formation of an altruism-regulating glandular appendage (gemma) in the ponerine ant Diacamma sp. from japan (Hymenoptera, Formicidae, Ponerinae). Dev Genes Evol 215(2):69–77. doi:10.1007/s00427-004n-0456-7n

    Google Scholar 

  • Gotwald WH Jr (1995) Army ants: the biology of social predation. Cornell University Press, Ithaca

    Google Scholar 

  • Haight KL (2006) Defensiveness of the fire ant, Solenopsis invicta, is increased during colony rafting. Insectes Sociaux 53(1):32–36. doi:10.1007/s00040-005n-0832-y

    Google Scholar 

  • Hart AG, Ratnieks FLW (2001) Task partitioning, division of labour and nest compartmentalisation collectively isolate hazardous waste in the leafcutting ant atta cephalotes. Behav Ecol Sociobiol 49(5):387–392. doi:10.1007/s002650000312

    Google Scholar 

  • Heinze J (1998) Intercastes, intermorphs, and ergatoid queens: who is who in ant reproduction? Insectes Sociaux 45(2):113–124. doi:10.1007/s000400050073

    Google Scholar 

  • Heinze J, Keller L (2000) Alternative reproductive strategies: a queen perspective in ants. Trends Ecol Evol 15(12):508–512. doi:10.1016/S0169-5347(00)01995-9

    Google Scholar 

  • Hölldobler B, Carlin NF (1985) Colony founding, queen dominance and oligogyny in the australian meat ant Iridomyrmex purpureus. Behav Ecol Sociobiol 18(1):45–58. doi:10.1007/BF00299237

    Google Scholar 

  • Hölldobler B, Carlin NF (1989) Colony founding, queen control, and worker reproduction in the ant Aphaenogaster (=Novomessor) cockerelli. Psyche 96(3–4):131–151. doi:10.1155/1989/74135

    Google Scholar 

  • Hölldobler B, Möglich M, Maschwitz U (1974) Communication by tandem running in the ant Camponotus sericeus. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 90(2):105–127. doi:10.1007/BF00694481

    Google Scholar 

  • Hölldobler B, Stanton RC, Markl H (1978) Recruitment and food-retrieving behavior in Novomessor (Formicidae: Hymenoptera): I. chemical signals. Behav Ecol Sociobiol 4(2):163–181. doi:10.1007/BF00354978

    Google Scholar 

  • Hölldobler B, Wilson EO (1977) The number of queens: an important trait in ant evolution. Naturwissenschaften 64(1):8–15. doi:10.1007/BF00439886

    Google Scholar 

  • Hölldobler B, Wilson EO (1990) The Ants. Harvard University Press, Cambridge

    Google Scholar 

  • Hölldobler B, Wilson EO (2009) The Superorganism: the beauty, elegance, and strangeness of insect societies. WW Norton, New York

    Google Scholar 

  • Inoue T, Sakagami SF, Salmah S, Yamane S (1984) The process of colony multiplication in the Sumatran stingless bee Trigona laeviceps. Biotropica 16(2):100–111

    Google Scholar 

  • Jenkins C (2013) [APP] Swarm! on Glass: The attention economy, glamified. http://livingthruglass.com/app-swarm-on-glass-the-attention-economy-gamified/

  • Krebs RA, Rissing SW (1991) Preference for large foundress associations in the desert ant Messor pergandei. Anim Behav 41(2):361–363. doi:10.1016/S0003-3472(05)80487-7n

    Google Scholar 

  • Kronauer DJC, Johnson RA, Boomsma JJ (2007) The evolution of multiple mating in army ants. Evolution 61(2):413–422. doi:10.1111/j.1558-5646n.2007.00040.x

    Google Scholar 

  • Kronauer DJC, Schöning C, d’Ettorre P, Boomsma JJ (2010) Colony fusion and worker reproduction after queen loss in army ants. Proc R Soc B 277(1682):755–763. doi:10.1098/rspb.2009.1591

  • Kumar GP, Buffin A, Pavlic TP, Pratt SC, Berman SM (2013) A stochastic hybrid system model of collective transport in the desert ant Aphaenogaster cockerelli. In: Proceedings of the 16th ACM international conference on hybrid systems: computation and control, Philadelphia

    Google Scholar 

  • Kurzweil R (1999) The age of spiritial machines: when computers exceed human intelligence. Viking, New York

    Google Scholar 

  • Kurzweil R (2005) The singularity is near: when humans transcend biology. Viking, New York

    Google Scholar 

  • Lamon B, Topoff H (1981) Avoiding predation by army ants: defensive behaviours of three ant species of the genus Camponotus. Anim Behav 29(4):1070–1081. doi:10.1016/S0003-3472(81)80060-7

    Google Scholar 

  • Liebig J, Hölldobler B, Peeters C (1998) Are ant workers capable of colony foundation? Naturwissenschaften 85(3):133–135. doi:10.1007/s001140050470

    Google Scholar 

  • Livnat A, Pippenger N (2006) An optimal brain can be composed of conflicting agents. Proc Natl Acad Sci U S A 103(9):3198–3202. doi:10.1073/pnas.0510932103

    Google Scholar 

  • Loeliger J, McCullough M (2012) Version control with git: powerful tools and techniques for collaborative software development, 2nd edn. O’Reilly, Cambridge

    Google Scholar 

  • Mas-Colell A, Whinston MD, Green JR (1995) Microeconomic theory. Oxford University Press, New York

    MATH  Google Scholar 

  • Matthey L, Berman S, Kumar V (2009) Stochastic strategies for a swarm robotic assembly system. In: Proceedings of the 2009 IEEE international conference on robotics and automation, Kobe, pp 1953–1958

    Google Scholar 

  • Mlot NJ, Tovey CA, Hu DL (2011) Fire ants self-assemble into waterproof rafts to survive floods. Proc Natl Acad Sci U S A 108(19):7669–7673. doi:10.1073/pnas.1016658108

    Google Scholar 

  • Moffett MW (1988) Foraging dynamics in the group-hunting myrmicine ant, Pheidologeton diversus. J Insect Behav 1(3):309–331. doi:10.1007/BF01054528

    Google Scholar 

  • Möglich M, Maschwitz U, Hölldobler B (1974) Tandem calling: a new kind of signal in ant communication. Science 186(4168):1046–1047. doi:10.1126/science.186.4168.1046

    Google Scholar 

  • Molet M, Baalen MV, Peeters C (2008) Shift in colonial reproductive strategy associated with a tropical-temperate gradient in Rhytidoponera ants. Am Nat 172(1):75–87. doi:10.1086/588079

    Google Scholar 

  • Monnin T, Ratnieks FLW, Jones GR, Beard R (2002) Pretender punishment induced by chemical signalling in a queenless ant. Nature 419(6902):61–65, doi:10.1038/nature00932

    Google Scholar 

  • Nicolis SC, Deneubourg JL (1999) Emerging patterns and food recruitment in ants: an analytical study. J Theor Biol 198:575–592. doi:10.1006/jtbi.1999.0934

    Google Scholar 

  • Nonacs P, Reeve HK (1993) Opportunistic adoption of orphaned nests in paper wasps as an alternative reproductive strategy. Behav Process 30(1):47–59. doi:10.1016/0376-6357(93)90011-F

    Google Scholar 

  • Nonacs P, Reeve HK (1995) The ecology of cooperation in wasps: causes and consequences of alternative reproductive decisions. Ecology 76(3):953–967. doi:dx.doi.org/10.2307/1939359

    Google Scholar 

  • Osborne MJ, Rubinstein A (1994) A course in game theory. MIT, Cambridge

    MATH  Google Scholar 

  • Palmer KA, Oldroyd BP (2000) Evolution of multiple mating in the genus Apis. Apidologie 31(2):235–248. doi:10.1051/apido:2000119

    Google Scholar 

  • Pardi L (1948) Dominance order in Polistes wasps. Physiol Zool 21(1):1–13

    Google Scholar 

  • Partridge LW, Partridge KA, Franks NR (1997) Field survey of a monogynous leptothoracine ant (Hymenoptera, Formicidae): evidence of seasonal polydomy? Insectes Sociaux 44(2):75–83. doi:10.1007/s000400050031

    Google Scholar 

  • Peeters C (1991a) Ergatoid queens and intercastes in ants: two distinct adult forms which look morphologically intermediate between workers and winged queens. Insectes Sociaux 38(1): 1–15. doi:10.1007/BF01242708

    Google Scholar 

  • Peeters C (1991b) The occurence of sexual reproduction among ant workers. Biol J Linn Soc 44(2):141–152. doi:10.1111/j.1095-8312.1991.tb00612.x

    MathSciNet  Google Scholar 

  • Peeters C, Hölldobler B, Moffett M, Musthak Ali TM (1994) “wall-papering” and elaborate nest architecture in the ponerine ant Harpegnathos saltator. Insectes Sociaux 41(2):211–218. doi:10.1007/BF01240479

    Google Scholar 

  • Peeters C, Hölldobler B (1995) Reproductive cooperation between queens and their mated workers: the complex life history of an ant with a valuable nest. Proc Natl Acad Sci U S A 92(24): 10,977–10,979

    Google Scholar 

  • Peeters C, Ito F (2001) Colony dispersal and the evolution of queen morphology in social Hymenoptera. Annu Rev Entomol 46:601–630. doi:10.1146/annurev.ento.46.1.601

    Google Scholar 

  • Peeters C, Liebig J, Hölldobler B (2000) Sexual reproduction by both queens and workers in the ponerine ant Harpegnathos saltator. Insectes Sociaux 47(4):325–332. doi:10.1007/PL00001724

    Google Scholar 

  • Pinter-Wollman N, Wollman R, Guetz A, Holmes S, Gordon DM (2011) The effect of individual variation on the structure and function of interaction networks in harvester ants. J R Soc Interface 8(64):1562–1573. doi:10.1098/rsif.2011.0059

    Google Scholar 

  • Pollock GB, Rissing SW (1985) Mating season and colony foundation of the seed-harvester ant, Veromessor pergandei. Psyche 92:125–134. doi:10.1155/1985/87410

    Google Scholar 

  • Pratt SC (2004) Collective control of the timing and type of comb construction by honey bees (Apis mellifera). Apidologie 35:193–205. doi:10.1051/apido:2004005

    Google Scholar 

  • Pratt SC (2005a) Behavioral mechanisms of collective nest-site choice by the ant Temnothorax curvispinosus. Insectes Sociaux 52(4):383–392. doi:10.1007/s00040-005-0823-z

    Google Scholar 

  • Pratt SC (2005b) Quorum sensing by encounter rates in the ant Temnothorax albipennis. Behav Ecol 16(2):488–496. doi:10.1093/beheco/ari020

    Google Scholar 

  • Pratt SC, Mallon EB, Sumpter DJ, Franks NR (2002) Quorum sensing, recruitment, and collective decision-making during colony emigration by the ant Leptothorax albipennis. Behav Ecol Sociobiol 52(2):117–127. doi:10.1007/s00265-002-0487-x

    Google Scholar 

  • Reeve HK, Gamboa GJ (1983) Colony activity integration in primitively eusocial wasps: the role of the queen (Polistes fuscatus, Hymenoptera: Vespidae). Behav Ecol Sociobiol 13(1):63–74. doi:10.1007/BF00295077

    Google Scholar 

  • Reeve HK, Gamboa GJ (1987) Queen regulation of worker foraging in paper wasps: a social feedback control system (Polistes fuscatus, Hymenoptera: Vespidae). Behaviour 102(3/4): 147–167

    Google Scholar 

  • Reeve HK, Starks PT, Peters JM, Nonacs P (2000) Genetic support for the evolutionary theory of reproductive transactions in social wasps. Proc R Soc B 267(1438):75–79. doi:10.1098/rspb.2000.0969

    Google Scholar 

  • Richardson TO, Christensen K, Franks NR, Jensen HJ, Sendova-Franks AB (2011) Ants in a labyrinth: a statistical mechanics approach to the division of labour. PLoS ONE 6(4):e18416. doi:10.1371/journal.pone.0018416

    Google Scholar 

  • Rissing SW, Pollock GB, Higgins MR, Hagen RH, Smith DR (1989) Foraging specialization without relatedness or dominance among co-founding ant queens. Nature 338(6214):420–422. doi:10.1038/338420a0

    Google Scholar 

  • Rissing SW, Johnson RA, Martin JW (2000) Colony founding behavior of some desert ants: geographic variation in metrosis. Psyche 103(1–2):95–101. doi:10.1155/2000/20135

    Google Scholar 

  • Robson SK, Beshers SN (1997) Division of labour and ’foraging for work’: simulating reality versus the reality of simulations. Anim Behav 53(1):214–218. doi:10.1006/anbe.1996.0290

    Google Scholar 

  • Sasaki T, Pratt SC (2011) Emergence of group rationality from irrational individuals. Behav Ecol 22(2):276–281. doi:10.1093/beheco/arq198

    Google Scholar 

  • Sasaki T, Pratt SC (2012) Groups have a larger cognitive capacity than individuals. Curr Biol 22(19):R827–R829. doi:10.1016/j.cub.2012.07.058

    Google Scholar 

  • Schmolke A (2009) Benefits of dispersed central-place foraging: an individual-based model of a polydomous ant colony. Am Nat 173(6):772–778. doi:10.1086/598493

    Google Scholar 

  • Schneirla TC (1944) A unique case of circular milling in ants, considered in relation to trail following and the general problem of orientation. Am Mus Novit 1253:1–26

    Google Scholar 

  • Schneirla TC (1949) Army-ant life and behavior under dry-season conditions. 3. the course of reproduction and colony behavior. Bull Am Mus Nat Hist 94(1):1–82

    Google Scholar 

  • Schneirla TC (1971) Army ants: a study in social organization. WH Freeman, San Francisco

    Google Scholar 

  • Schneirla TC, Brown RZ (1950) Army-ant life and behavior under dry-season conditions. 4. further investigation of cyclic processes in behavioral and reproductive functions. Bull Am Mus Nat Hist 50(5):263–354

    Google Scholar 

  • Schofield RMS, Emmett KD, Niedbala JC, Nesson MH (2011) Leaf-cutter ants with worn mandibles cut half as fast, spend twice the energy, and tend to carry instead of cut. Behav Ecol Sociobiol 65(5):969–982. doi:10.1007/s00265-010-1098-6

    Google Scholar 

  • Seeley TD (1995) The wisdom of the hive: the social physiology of honey bee colonies. Harvard University, Cambridge

    Google Scholar 

  • Seeley TD (2010) Honeybee democracy. Princeton University Press, Princeton

    Google Scholar 

  • Shaffer Z, Sasaki T, Pratt SC (2013) Linear recruitment leads to allocation and flexibility in collective foraging by ants. Anim Behav (in press)

    Google Scholar 

  • Shakarad M, Gadagkar R (1995) Colony founding in the primitively eusocial wasp, Ropalidia marginata (Hymenoptera: Vespidae). Ecol Entomol 20(3):273–282. doi:10.1111/j.1365-2311.1995.tb00457.x

    Google Scholar 

  • Sharpe T, Webb B (1996) Simulated and situated models of chemical trail following in ants. In: Pfeifer R, Blumberg B, Meyer JA, Wilson SW (eds) Proceedings of the fifth international conference on simulation of adaptive behavior (SAB96), North Falmouth

    Google Scholar 

  • Slonczewski J (2013a) Mitochondrial singularity. http://www.antipope.org/charlie/blog-static/2013/03/mitochondrial-singularity.html

  • Slonczewski J (2013b) Mitochondrial singularity. http://ultraphyte.com/2013/03/25/mitochondrial-singularity/

  • Smith AA, Haight KL (2008) Army ants as research and collection tools. J Insect Sci 8:71. doi:10.1673/031.008.7101

    Google Scholar 

  • Smith AA, Hölldobler B, Liebig J (2011) Reclaiming the crown: queen to worker conflict over reproduction in Aphaenogaster cockerelli. Naturwissenschaften 98(3):237–240. doi:10.1007/s00114-011-0761-8

    Google Scholar 

  • St Laurent AM (2004) Understanding open source and free software licensing. O’Reilly, Beijing/Sebastopol

    Google Scholar 

  • Sumpter DJT, Beekman M (2003) From nonlinearity to optimality: pheromone trail foraging by ants. Anim Behav 66(2):273–280. doi:10.1006/anbe.2003.2224

    Google Scholar 

  • Surowieckie J (2004) The wisdom of crowds: why the many are smarter than the few and how collective wisdom shapes business, economies, societies and nations. Doubleday, New York

    Google Scholar 

  • Svennebring J, Koenig S (2003) Trail-laying robots for robust terrain coverage. In: Proceedings of the 2003 IEEE International conference on robotics and automation (ICRA ’03), Taipei, vol 1, pp 75–82. doi:10.1109/ROBOT.2003.1241576

  • Szulc J (2011) Galeria :: Cyfrowo :: Macro :: Mrówki. http://foto.julian.net.pl/gallery3/digital/Mocro-fotografia/HomeAnts

  • Tarpy DR, Nielsen R, Nielsen DI (2004) A scientific note on the revised estimates of effective paternity frequency in Apis. Insectes Sociaux 51(2):203–204. doi:10.1007/s00040-004-0734-4

    Google Scholar 

  • Tofts C, Franks NR (1992) Doing the right thing: ants, honeybees and naked mole-rats. Trends Ecol Evol 7(10):346–349. doi:10.1016/0169-5347(92)90128-X

    MATH  Google Scholar 

  • Tripet F, Nonacs P (2004) Foraging for work and age-based polyethism: the roles of age and previous experience on task choice in ants. Ethology 110(11):863–877. doi:10.1111/j. 1439-0310.2004.01023.x

    Google Scholar 

  • Tschinkel WR (2006) The fire ants. Belknap, Cambridge

    Google Scholar 

  • Visscher PK (2007) Group decision making in nest-site selection among social insects. Annu Rev Entomol 52:255–275. doi:10.1146/annurev.ento.51.110104.151025

    Google Scholar 

  • Walker SI, Cisneros L, Davies PCW (2012) Evolutionary transitions and top-down causation. In: Proceedings of the thirteenth international conference on the simulation and synthesis of living systems (Artificial Life 13), vol 13, East Lansing, pp 283–290. doi:10.7551/978-0-262-31050-5-ch038

  • Walker SI, Davies PCW (2013) The algorithmic origins of life. J R Soc Interface 10(79):20120869. doi:10.1098/rsif.2012.0869

    Google Scholar 

  • Waters JS, Fewell JH (2012) Information processing in social insect networks. PLoS ONE 7(7):e40337. doi:10.1371/journal.pone.0040337

    Google Scholar 

  • West-Eberhard MJ (1969) The social biology of polistine wasps. Miscellaneous publications, vol 140. Museum of Zoology, University of Michigan, Ann Arbor

    Google Scholar 

  • Wheeler WM (1918) A study of some ant larvæ, with a consideration of the origin and meaning of the social habit among insects. Proc Am Philos Soc 57(4):293–343

    MATH  Google Scholar 

  • Wheeler DE (1986) Developmental and physiological determinants of caste in social Hymenoptera: evolutionary implications. Am Nat 128(1):13–34

    Google Scholar 

  • Wilson EO (1971) The insect societies. Belknap Press, Cambridge

    Google Scholar 

  • Yang R, Fang F, Jiang AX, Rajagopal K, Tambe M, Maheswaran RT (2012) Designing better strategies against human adversaries in network security games. In: Proceedings of the 11th international conference on autonomous agents and multiagent systems (AAMAS ’12), Valencia, vol 3, pp 1299–1300

    Google Scholar 

Download references

Acknowledgements

Thanks to Bert Hölldobler for connecting us to this interesting speculative project. The writing of this chapter was supported by the National Science Foundation (award 1012029). Images in this chapter that were not already in the public domain were used either under the explicit permission of the image owner or according to a CC BY 2.0 (Creative Commons 2013a), CC BY 2.5 (Creative Commons 2013b), or CC BY 3.0 (Creative Commons 2013c) license.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Theodore P. Pavlic .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Pavlic, T.P., Pratt, S.C. (2013). Superorganismic Behavior via Human Computation. In: Michelucci, P. (eds) Handbook of Human Computation. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8806-4_74

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-8806-4_74

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-8805-7

  • Online ISBN: 978-1-4614-8806-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics