Skip to main content

Therapeutic Ultrasound for Glaucoma (TUG)

  • Chapter
  • First Online:
Surgical Innovations in Glaucoma

Abstract

TUG is a new and novel method of treating glaucoma that offers a comfortable, repeatable means of decreasing intraocular pressure. It is easily performed and has been shown to have a significant additive effect when used as an adjunct to pharmaceutical agent or as an initial glaucoma treatment. Due to its ease of use, potential portability, and repeatable qualities, it has the potential for changing the way glaucoma is treated today. The stages of the development of the device and treatment method are described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Poley BJ, Lindstrom RL, Samuelson TW. Long-term effects of phacoemulsification with intraocular lens implantation in normotensive and ocular hypertensive eyes. J Cataract Refract Surg. 2008;34(5):735–42.

    Article  PubMed  Google Scholar 

  2. Bowling B, Calladine D. Routine reduction of glaucoma medication following phacoemulsification. J Cataract Refract Surg. 2009;35(3):406–7.

    Article  PubMed  Google Scholar 

  3. Shingleton BJ, Laul A, Nagao K, Wolff B, O’Donoghue M, Eagan E, Flattem N, Desai-Bartoli S. Effect of phacoemulsification on intraocular pressure in eyes with pseudoexfoliation: single-surgeon series. J Cataract Refract Surg. 2008;34(11):1834–41.

    Article  PubMed  Google Scholar 

  4. Pohjalainen T, Vesti E, Uusitalo RJ, Laatikainen L. Phacoemulsification and intraocular lens implantation in eyes with open-angle glaucoma. Acta Ophthalmol Scand. 2001;79(3):313–6.

    Article  CAS  PubMed  Google Scholar 

  5. Mierzejewski A, Eliks I, Kałuzny B, Zygulska M, Harasimowicz B, Kałuzny JJ. Cataract phacoemulsification and intraocular pressure in glaucoma patients. Klin Oczna. 2008;110(1–3):11–7.

    PubMed  Google Scholar 

  6. Issa SA, Pacheco J, Mahmood U, Nolan J, Beatty S. A novel index for predicting intraocular pressure reduction following cataract surgery. Br J Ophthalmol. 2005;89:543–6. doi:10.1136/bjo.2004.047662.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Radius RL, Schultz K, Sobocinski K, Schultz RO, Easom H. Pseudophakia and intraocular pressure. Am J Ophthalmol. 1984;97(6):738–42.

    CAS  PubMed  Google Scholar 

  8. Silverman RH, Vogelsang B, Rondeau MJ, Coleman DJ. Therapeutic ultrasound for the treatment of glaucoma. Am J Ophthalmol. 1991;111(3):327–37. Erratum in: Am J Ophthalmol 1991;112(1):105.

    Google Scholar 

  9. Valtot F, Kopel J, Haut J. Treatment of glaucoma with high intensity focused ultrasound. Int Ophthalmol. 1989;13(1–2):167–70.

    Article  CAS  PubMed  Google Scholar 

  10. Feril LB Jr., Kondo T, Tachibana K, Ogawa R, Ogawa K. Biological effects of ultrasound: sonomechanical mechanism, and its implications on therapy and biosafety. Therapeutic ultrasound: 5th international symposium on therapeutic ultrasound; 2006;829. New York.Available from: http://proceedings.aip.org/proceedings

  11. Zhou L, Maruyama I, Li Y, Cheng EL, Yue BY. Integrin transduction expression of integrin receptors in the human trabecular meshwork. Curr Eye Res. 1999;19(5):395–402.

    Article  PubMed  Google Scholar 

  12. Choi BH, Choi MH, Kwak MG, Min BH, Woo ZH, Park SR. Integrin transduction initiated by mechanical receptors of stretch activated channels mechanotransduction pathways of low-intensity ultrasound in C-28/I2 human chondrocyte cell line. Proc Inst Mech Eng H. 2007;221(5):527–35.

    Article  CAS  PubMed  Google Scholar 

  13. Wang N, Chintala SK, Fini ME, Schuman JS. Ultrasound activates the TM ELAM-1/IL-1/NF-kappaB response: a potential mechanism for intraocular pressure reduction after phacoemulsification. Invest Ophthalmol Vis Sci. 2003;44(5):1977–81.

    Article  PubMed Central  PubMed  Google Scholar 

  14. Bradley JM, Kelley MJ, Rose A, Acott TS. Signaling pathways used in trabecular matrix metalloproteinase response to mechanical stretch. Invest Ophthalmol Vis Sci. 2003;44(12):5174–81.

    Article  PubMed  Google Scholar 

  15. Bradley JM, Kelley MJ, Zhu X, Anderssohn AM, Alexander JP, Acott TS. Effects of mechanical stretching on trabecular matrix metalloproteinases. Invest Ophthalmol Vis Sci. 2001;42(7):1505–13.

    CAS  PubMed  Google Scholar 

  16. Prevent Blindness America. Available from: http://www.preventblindness.org.

  17. Glaucoma Research Foundation. Available from: http://www.glaucoma.org.

  18. Pradhan S, Wilkes M, Leffler CT, Pratt DC, Mahmood MA. Correlation of change in IOP with anterior chamber depth and angle after cataract surgery measured by anterior segment OCT. Poster presented at the American Society of Cataract and Refractive Surgery (ASCRS) meeting, San Francisco; 6 April 2009.

    Google Scholar 

  19. Floyd MS, Valentine JR, Olson RJ. Fluidics and heat generation of Alcon Infiniti and Legacy, Bausch & Lomb Millennium, and advanced medical optics sovereign phacoemulsification systems. Am J Ophthalmol. 2006;142(3):387–92.

    Article  PubMed  Google Scholar 

  20. Polack PJ, Iwamoto T, Silverman RH, Driller J, Lizzi FL, Coleman DJ. Histologic effects of contact ultrasound for the treatment of glaucoma. Invest Ophthalmol Vis Sci. 1991;32(7):2136–42.

    CAS  PubMed  Google Scholar 

  21. Valtot F, Kopel J, Le Mer Y. [Principles and histologic effects of the treatment of hypertension with focused high-intensity ultrasound]. Ophtalmologie. 1990;4(2):135–7.

    CAS  PubMed  Google Scholar 

  22. Coleman DJ, Lizzi FL, Driller J, Rosado AL, Chang S, Iwamoto T, Rosenthal D. Therapeutic ultrasound in the treatment of glaucoma. I. Experimental model. Ophthalmology. 1985;92(3):339–46.

    Article  CAS  PubMed  Google Scholar 

  23. Silverman RH, Vogelsang B, Rondeau MJ, Coleman DJ. Therapeutic ultrasound for the treatment of glaucoma. Am J Ophthalmol. 1991;111(3):327–37.

    CAS  PubMed  Google Scholar 

  24. Coleman DJ, Lizzi FL, Silverman RH, Dennis Jr PH, Driller J, Rosado A, Iwamoto T. Therapeutic ultrasound. Ultrasound Med Biol. 1986;12(8):633–8.

    Article  CAS  PubMed  Google Scholar 

  25. Liton PB, Liu X, Challa P, Epstein DL, Gonzalez P. Induction of TGF-beta1 in the trabecular meshwork under cyclic mechanical stress. J Cell Physiol. 2005;205(3):364–71.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Liton PB, Luna C, Bodman M, Hong A, Epstein DL, Gonzalez P. Induction of IL-6 expression by mechanical stress in the trabecular meshwork. Biochem Biophys Res Commun. 2005;337(4):1229–36. Epub 2005 Oct 7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Liton PB, Li G, Luna C, Gonzalez P, Epstein DL. Cross-talk between TGF-beta1 and IL-6 in human trabecular meshwork cells. Mol Vis. 2009;15:326–34. Epub 2009 Feb 11.

    CAS  PubMed Central  PubMed  Google Scholar 

  28. Kalapesi FB, Tan JC, Coroneo MT. Stretch-activated channels: a mini-review. Are stretch-activated channels an ocular barometer. Clin Experiment Ophthalmol. 2005;33(2):210–7.

    Article  PubMed  Google Scholar 

  29. Sato Y, Matsuo T, Ohtsuki H. A novel gene (oculomedin) induced by mechanical stretching in human trabecular cells of the eye. Biochem Biophys Res Commun. 1999;259(2):349–51.

    Article  CAS  PubMed  Google Scholar 

  30. Luna C, Li G, Liton PB, Epstein DL, Gonzalez P. Alterations in gene expression induced by cyclic mechanical stress in trabecular meshwork cells. Mol Vis. 2009;15:534–44. Epub 2009 Mar 11.

    CAS  PubMed Central  PubMed  Google Scholar 

  31. Mozaffarieh M, Flammer J. A novel perspective on natural therapeutic approaches in glaucoma therapy. Expert Opin Emerg Drugs. 2007;12(2):195–8.

    Article  CAS  PubMed  Google Scholar 

  32. WuDunn D. Mechanobiology of trabecular meshwork cells. Exp Eye Res. 2009;88(4):718–23. Epub 2008 Nov 24.

    Article  CAS  PubMed  Google Scholar 

  33. Acott TS, Kelley MJ. Extracellular matrix in the trabecular meshwork. Exp Eye Res. 2008;86(4):543–61. Epub 2008 Jan 25.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Tamm ER, Fuchshofer R. What increases outflow resistance in primary open-angle glaucoma? Surv Ophthalmol. 2007;52 Suppl 2:S101–4.

    Article  PubMed  Google Scholar 

  35. Kelley MJ, Rose A, Song K, Lystrup B, Samples JW, Acott TS. p38 MAP kinase pathway and stromelysin regulation in trabecular meshwork cells. Invest Ophthalmol Vis Sci. 2007;48(7):3126–37.

    Article  PubMed  Google Scholar 

  36. Bradley JM, Anderssohn AM, Colvis CM, Parshley DE, Zhu XH, Ruddat MS, Samples JR, Acott TS. Mediation of laser trabeculoplasty-induced matrix metalloproteinase expression byIL-1_ and TNF_. Invest Ophthalmol Vis Sci. 2000;41:422–30.

    CAS  PubMed  Google Scholar 

  37. Kelley MJ, Rose AY, Song K, Chen Y, Bradley JM, Rookhuizen D, Acott TS. Synergism of TNF and IL-1 in the induction of matrix metalloproteinase-3 in trabecular meshwork. Invest Ophthalmol Vis Sci. 2007;48(6):2634–43.

    Article  PubMed  Google Scholar 

  38. Hosseini M, Rose AY, Song K, Bohan C, Alexander JP, Kelley MJ, Acott TS. IL-1 and TNF induction of matrix metalloproteinase-3 by c-Jun N-terminal kinase in trabecular meshwork. Invest Ophthalmol Vis Sci. 2006;47(4):1469–76.

    Article  PubMed  Google Scholar 

  39. Pang IH, Hellberg PE, Fleenor DL, Jacobson N, Clark AF. Expression of matrix metalloproteinases and their inhibitors in human trabecular meshwork cells. Invest Ophthalmol Vis Sci. 2003;44(8):3485–93.

    Article  PubMed  Google Scholar 

  40. Alexander JP, Acott TS. Involvement of the Erk-MAP kinase pathway in TNF alpha regulation of trabecular matrix metalloproteinases and TIMPs. Invest Ophthalmol Vis Sci. 2003;44(1):164–9.

    Article  PubMed  Google Scholar 

  41. Shearer T, Crosson CE. Activation of extracellular signal-regulated kinase in trabecular meshwork cells. Exp Eye Res. 2001;73(1):25–35.

    Article  CAS  PubMed  Google Scholar 

  42. Samples JR, Alexander JP, Acott TS. Regulation of the levels of human trabecular matrix metalloproteinases and inhibitor by interleukin-1 and Dexamethasone. Invest Ophthalmol Vis Sci. 1993;34(12):3386–95.

    CAS  PubMed  Google Scholar 

  43. Drews UW. Ultrasound treatment of glaucoma. Fortschr Ophthalmol. 1989;86(5):489–93.

    CAS  PubMed  Google Scholar 

  44. Tarner IH, Müller-Ladner U, Uhlemann C, Lange U. The effect of mild whole-body hyperthermia on systemic levels of TNF-alpha, IL-1beta, and IL-6 in patients with ankylosing spondylitis. Clin Rheumatol. 2009;28(4):397–402.

    Article  PubMed  Google Scholar 

  45. Xie X, Shao X, Gao F, Jin H, Zhou J, Du L, Zhang Y, Ouyang W, Wang X, Zhao L, Zhang X, Tang J. Effect of hyperthermia on invasion ability and TGF-β1 expression of breast carcinoma MCF-7 cells. Oncol Rep. 2011;25(6):1573–9. doi:10.3892/or.2011.1240. Epub 2011 Mar 29.

    CAS  PubMed  Google Scholar 

  46. Kramer G, Steiner GE, et al. Response to sublethal heat treatment of prostatic tumor cells and of prostatic tumor infiltrating T-cells. Prostate. 2004;58(2):109–20.

    Article  CAS  PubMed  Google Scholar 

  47. Lee CT, Zhong L, Mace TA, Repasky EA. Elevation in body temperature to fever range enhances and prolongs subsequent responsiveness of macrophages to endotoxin challenge. PlosOne. 2012;7(1):e30077. Epub 2012 Jan 10.

    Article  CAS  Google Scholar 

  48. Morita Y, Oda S, Sadahiro T, Nakamura M, Oshima T, Otani S, Hirasawa H. The effects of body temperature control on cytokine production in a rat model of ventilator-induced lung injury. Cytokine. 2009;47(1):48–55. Epub 2009 May 8.

    Article  CAS  PubMed  Google Scholar 

  49. Baronzio G, Gramaglia A, Fiorentini G. Hyperthermia and immunity. A brief overview. In Vivo. 2006;20(6A):689–95. Radiotherapy Hyperthermia Department, Policlinico di Monza, Via Amati, 111, 20052, Italy. barongf@intercom.it.

    CAS  PubMed  Google Scholar 

  50. Atanackovic D, Pollok K, Faltz C, Boeters I, Jung R, Nierhaus A, Braumann KM, Hossfeld DK, Hegewisch-Becker S. Patients with solid tumors treated with high-temperature whole body hyperthermia show a redistribution of naive/memory T-cell subtypes. Am J Physiol Regul Integr Comp Physiol. 2006;290(3):R585–94. Epub 2005 Oct 27. Department of Oncology/Hematology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany. D.Atanackovic@uke.uni-hamburg.de.

    Article  CAS  PubMed  Google Scholar 

  51. Yamashita N, Hoshida S, Otsu K, Taniguchi N, Kuzuya T, Hori M. Involvement of cytokines in the mechanism of whole-body hyperthermia-induced cardioprotection. Circulation. 2000;102(4):452–7. First Department of Medicine, Osaka University Medical School and the Cardiovascular Division, Osaka, Japan.

    Article  CAS  PubMed  Google Scholar 

  52. Robins HI, Grosen E, Katschinski DM, Longo W, Tiggelaar CL, Kutz M, Winawer J, Graziano F. Whole body hyperthermia induction of soluble tumor necrosis factor receptors: implications for rheumatoid diseases. J Rheumatol. 1999;26(12):2513–6.

    CAS  PubMed  Google Scholar 

  53. Haveman J, Geerdink AG, Rodermond HM. Cytokine production after whole body and localized hyperthermia. Int J Hyperthermia. 1996;12(6):791–800.

    Article  CAS  PubMed  Google Scholar 

  54. Katschinski DM, Wiedemann GJ, Longo W, d’Oleire FR, Spriggs D, Robins HI. Whole body hyperthermia cytokine induction: a review, and unifying hypothesis for myeloprotection in the setting of cytotoxic therapy. Cytokine Growth Factor Rev. 1999;10(2):93–7. University of Wisconsin, School of Medicine, Madison 53792, USA.

    Article  CAS  PubMed  Google Scholar 

  55. Robins HI, Kutz M, Wiedemann GJ, Katschinski DM, Paul D, Grosen E, Tiggelaar CL, Spriggs D, Gillis W, d’Oleire F. Cytokine induction by 41.8 degrees C whole body hyperthermia. Cancer Lett. 1995;97(2):195–201. University of Wisconsin Clinical Science Center, Madison, USA.

    Article  CAS  PubMed  Google Scholar 

  56. Shen RN, Hornback NB, Shidnia H, Wu B, Lu L, Broxmeyer HE. Whole body hyperthermia: a potent radioprotector in vivo. Int J Radiat Oncol Biol Phys. 1991;20(3):525–30. Dept. of Medicine (Hematology/Oncology), Indiana University School of Medicine, Indianapolis 46202.

    Article  CAS  PubMed  Google Scholar 

  57. Issa SA, Pacheco J, Mahmood U, Nolan J, Beatty S. A novel index for predicting intraocular pressure reduction following cataract surgery. Br J Ophthalmol. 2005;89:543–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  58. Altan C, Bayraktar S, Altan T, Eren H, Yilmaz OF. Anterior chamber depth, iridocorneal angle width, and intraocular pressure changes after uneventful phacoemulsification in eyes without glaucoma and with open iridocorneal angles. J Cataract Refract Surg. 2004;30(4):832–8.

    Article  PubMed  Google Scholar 

  59. Noecker RJ, Kramer TR. Comparison of the acute morphologic changes after selective laser trabeculoplasty and argon laser trabeculoplasty in human eye. Invest Ophthalmol Vis Sci. 1998;39:S472.

    Google Scholar 

  60. Chang IA, Nguyen UD. Thermal modeling of lesion growth with radiofrequency ablation devices. BioMed Eng OnLine. 2004;3:1–19.

    Article  Google Scholar 

  61. Takahashi S, Tanaka R, Watanabe M, Takahashi H, Kakinuma K, Suda T, Yamada M, Takahashi H. Effects of whole-body hyperthermia on the canine central nervous system. Int J Hyperthermia. 1999;15(3):203–16.

    Article  CAS  PubMed  Google Scholar 

  62. Zhou Y-F. High intensity focused ultrasound in clinical tumor ablation. World J Clin Oncol. 2011;2(1):8–27.

    Article  PubMed Central  PubMed  Google Scholar 

  63. van der Zee J. Heating the patient: a promising approach? Ann Oncol. 2002;13(8):1173–84.

    Article  PubMed  Google Scholar 

  64. Falk MH, Issels RD. Hyperthermia in oncology. Int J Hyperthermia. 2001;17(1):1–18.

    Article  CAS  PubMed  Google Scholar 

  65. Zhou AW, Giroux J, Mao AJ, Hutnik CM. Can preoperative anterior chamber angle width predict magnitude of intraocular pressure change after cataract surgery? Can J Ophthalmol. 2010;45(2):149–53.

    Article  PubMed  Google Scholar 

  66. Shrivastava A, Singh K. The effect of cataract extraction on intraocular pressure. Curr Opin Ophthalmol. 2010;21(2):118–22.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donald Schwartz MD, OD, MPA, MOpt .

Editor information

Editors and Affiliations

Electronic supplementary material

Below is the link to the electronic supplementary material.

Typical early TUG treatment (MPG 16460 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Schwartz, D. (2014). Therapeutic Ultrasound for Glaucoma (TUG). In: Samples, J.R., Ahmed, I.I.K. (eds) Surgical Innovations in Glaucoma. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8348-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-8348-9_12

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-8347-2

  • Online ISBN: 978-1-4614-8348-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics