Skip to main content

Brain Shift and Updated Intraoperative Navigation with Intraoperative MRI

  • Chapter
  • First Online:
  • 3592 Accesses

Abstract

Image-guided navigation provides a valuable adjunct to neurosurgical procedures. However, since the brain is not a rigid body, intraoperative changes, summarized as “brain shift”, represent a major practical and theoretical challenge. Intraoperative imaging, in particular intraoperative MRI to update information on computer-assisted navigation systems, solves the practical issue. However, capturing, characterizing and modelling brain deformation have opened interesting research avenues, which may lead to a more thorough understanding of the biomechanical properties of the brain. Potential applications go beyond surgical simulation. Obtaining data on the viscoelastic properties of the brain may yield valuable information in regard to physiological (e.g. ageing) as well as pathological conditions (reactions to traumatic brain injuries as well as degenerative diseases).

In this chapter, we portray the development of “brain shift” characterization and potential future directions, as well as the development and practical application of updated surgical navigation with intraoperative MRI.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Yasargil MG. Microneurosurgery, vol. I. Stuttgart: Georg Thieme Verlag; 1984.

    Google Scholar 

  2. Roberts DW, Strohbehn JW, Hatch JF, Murray W, Kettenberger H. A frameless stereotaxic integration of computerized tomographic imaging and the operating microscope. J Neurosurg. 1986;65(4):545–9.

    Article  CAS  PubMed  Google Scholar 

  3. Watanabe E, Watanabe T, Manaka S, Mayanagi Y, Takakura K. Three-dimensional digitizer (neuronavigator): new equipment for computed tomography-guided stereotaxic surgery. Surg Neurol. 1987;27(6):543–7.

    Article  CAS  PubMed  Google Scholar 

  4. Nabavi A, Manthei G, Blomer U, Kumpf L, Klinge H, Mehdorn HM. Neuronavigation. Computer-assisted surgery in neurosurgery. Radiologe. 1995;35(9):573–7.

    CAS  PubMed  Google Scholar 

  5. Stummer W, Pichlmeier U, Meinel T, Wiestler OD, Zanella F, Reulen HJ. Fluorescence-guided surgery with 5-aminolevulinic acid for resection of malignant glioma: a randomised controlled multicentre phase III trial. Lancet Oncol. 2006;7(5):392–401.

    Article  CAS  PubMed  Google Scholar 

  6. Nabavi A, Gering DT, Kacher DF, et al. Surgical navigation in the open MRI. Acta Neurochir Suppl. 2003;85:121–5.

    Article  CAS  PubMed  Google Scholar 

  7. Jolesz FA, Shtern F. The operating room of the future. Report of the National Cancer Institute Workshop, “imaging-guided stereotactic tumor diagnosis and treatment”. Invest Radiol. 1992;27(4):326–8.

    Article  CAS  PubMed  Google Scholar 

  8. Jolesz FA. Interventional magnetic resonance imaging, computed tomography, and ultrasound. Acad Radiol. 1995;2 Suppl 2:S124–5.

    Article  PubMed  Google Scholar 

  9. Feinsod M. A flask full of jelly: the first in vitro model of concussive head injury–1830. Neurosurgery. 2002;50(2):386–91.

    PubMed  Google Scholar 

  10. Zou H, Schmiedeler JP, Hardy WN. Separating brain motion into rigid body displacement and deformation under low-severity impacts. J Biomech. 2007;40(6):1183–91.

    Article  PubMed  Google Scholar 

  11. Hill DL, Maurer Jr CR, Maciunas RJ, Barwise JA, Fitzpatrick JM, Wang MY. Measurement of intraoperative brain surface deformation under a craniotomy. Neurosurgery. 1998;43(3):514–26; discussion 527–18.

    Article  CAS  PubMed  Google Scholar 

  12. Jodicke A, Deinsberger W, Erbe H, Kriete A, Boker DK. Intraoperative three-dimensional ultrasonography: an approach to register brain shift using multidimensional image processing. Minim Invasive Neurosurg. 1998;41(1):13–9.

    Article  CAS  PubMed  Google Scholar 

  13. Roberts DW, Hartov A, Kennedy FE, Miga MI, Paulsen KD. Intraoperative brain shift and deformation: a quantitative analysis of cortical displacement in 28 cases. Neurosurgery. 1998;43(4):749–58; discussion 758–60.

    Article  CAS  PubMed  Google Scholar 

  14. Ganser KA, Dickhaus H, Staubert A, et al. Quantification of brain shift effects in MRI images. Biomed Tech (Berl). 1997;42(Suppl):247–8.

    Article  PubMed  Google Scholar 

  15. Nimsky C, Ganslandt O, Cerny S, Hastreiter P, Greiner G, Fahlbusch R. Quantification of, visualization of, and compensation for brain shift using intraoperative magnetic resonance imaging. Neurosurgery. 2000;47(5):1070–9; discussion 1079–80.

    Article  CAS  PubMed  Google Scholar 

  16. Nabavi A, Black PM, Gering DT, et al. Serial intraoperative magnetic resonance imaging of brain shift. Neurosurgery. 2001;48(4):787–97; discussion 797–88.

    CAS  PubMed  Google Scholar 

  17. Hata N, Nabavi A, Wells 3rd WM, et al. Three-dimensional optical flow method for measurement of volumetric brain deformation from intraoperative MR images. J Comput Assist Tomogr. 2000;24(4):531–8.

    Article  CAS  PubMed  Google Scholar 

  18. Ferrant M, Nabavi A, Macq B, Jolesz FA, Kikinis R, Warfield SK. Registration of 3-D intraoperative MR images of the brain using a finite-element biomechanical model. IEEE Trans Med Imaging. 2001;20(12):1384–97.

    Article  CAS  PubMed  Google Scholar 

  19. Skrinjar O, Nabavi A, Duncan J. Model-driven brain shift compensation. Med Image Anal. 2002;6(4):361–73.

    Article  PubMed  Google Scholar 

  20. Miller K. Non-linear computer simulation of brain deformation. Biomed Sci Instrum. 2001;37:179–84.

    CAS  PubMed  Google Scholar 

  21. Hastreiter P, Rezk-Salama C, Soza G, et al. Strategies for brain shift evaluation. Med Image Anal. 2004;8(4):447–64.

    Article  PubMed  Google Scholar 

  22. Clatz O, Delingette H, Talos IF, et al. Robust nonrigid registration to capture brain shift from intraoperative MRI. IEEE Trans Med Imaging. 2005;24(11):1417–27.

    Article  PubMed Central  PubMed  Google Scholar 

  23. Wittek A, Kikinis R, Warfield SK, Miller K. Brain shift computation using a fully nonlinear biomechanical model. Med Image Comput Comput Assist Interv. 2005;8(Pt 2):583–90.

    PubMed  Google Scholar 

  24. Miga MI, Roberts DW, Kennedy FE, et al. Modeling of retraction and resection for intraoperative updating of images. Neurosurgery. 2001;49(1):75–84; discussion 84–75.

    CAS  PubMed  Google Scholar 

  25. Roberts DW, Miga MI, Hartov A, et al. Intraoperatively updated neuroimaging using brain modeling and sparse data. Neurosurgery. 1999;45(5):1199–206; discussion 1206–197.

    Article  CAS  PubMed  Google Scholar 

  26. Wittek A, Miller K, Kikinis R, Warfield SK. Patient-specific model of brain deformation: application to medical image registration. J Biomech. 2007;40(4):919–29.

    Article  PubMed  Google Scholar 

  27. Archip N, Clatz O, Whalen S, et al. Non-rigid alignment of pre-operative MRI, fMRI, and DT-MRI with intra-operative MRI for enhanced visualization and navigation in image-guided neurosurgery. Neuroimage. 2007;35(2):609–24.

    Article  PubMed Central  PubMed  Google Scholar 

  28. Dumpuri P, Thompson RC, Cao A, et al. A fast and efficient method to compensate for brain shift for tumor resection therapies measured between preoperative and postoperative tomograms. IEEE Trans Biomed Eng. 2010;57(6):1285–96.

    Article  PubMed Central  PubMed  Google Scholar 

  29. Farber M, Hummel F, Gerloff C, Handels H. Virtual reality simulator for the training of lumbar punctures. Methods Inf Med. 2009;48(5):493–501.

    Article  PubMed  Google Scholar 

  30. Chen I, Coffey AM, Ding S, et al. Intraoperative brain shift compensation: accounting for dural septa. IEEE Trans Biomed Eng. 2011;58(3):499–508.

    Article  PubMed  Google Scholar 

  31. Reinertsen I, Collins DL. A realistic phantom for brain-shift simulations. Med Phys. 2006;33(9):3234–40.

    Article  CAS  PubMed  Google Scholar 

  32. Handels H, Ehrhardt J. Medical image computing for computer-supported diagnostics and therapy. Advances and perspectives. Methods Inf Med. 2009;48(1):11–7.

    CAS  PubMed  Google Scholar 

  33. Muthupillai R, Lomas DJ, Rossman PJ, Greenleaf JF, Manduca A, Ehman RL. Magnetic resonance elastography by direct visualization of propagating acoustic strain waves. Science. 1995;269(5232):1854–7.

    Article  CAS  PubMed  Google Scholar 

  34. Green MA, Bilston LE, Sinkus R. In vivo brain viscoelastic properties measured by magnetic resonance elastography. NMR Biomed. 2008;21(7):755–64.

    Article  PubMed  Google Scholar 

  35. Koivukangas J, Louhisalmi Y, Alakuijala J, Oikarinen J. Ultrasound-controlled neuronavigator-guided brain surgery. J Neurosurg. 1993;79(1):36–42.

    Article  CAS  PubMed  Google Scholar 

  36. Unsgaard G, Ommedal S, Muller T, Gronningsaeter A, Nagelhus Hernes TA. Neuronavigation by intraoperative three-dimensional ultrasound: initial experience during brain tumor resection. Neurosurgery. 2002;50(4):804–12; discussion 812.

    Article  PubMed  Google Scholar 

  37. Shalit MN, Israeli Y, Matz S, Cohen ML. Experience with intraoperative CT scanning in brain tumors. Surg Neurol. 1982;17(5):376–82.

    Article  CAS  PubMed  Google Scholar 

  38. Uhl E, Zausinger S, Morhard D, et al. Intraoperative computed tomography with integrated navigation system in a multidisciplinary operating suite. Neurosurgery. 2009;64(5 Suppl 2):231–9; discussion 239–40.

    PubMed  Google Scholar 

  39. Schenck JF, Jolesz FA, Roemer PB, et al. Superconducting open-configuration MR imaging system for image-guided therapy. Radiology. 1995;195(3):805–14.

    CAS  PubMed  Google Scholar 

  40. Jolesz FA. Future perspectives in intraoperative imaging. Acta Neurochir Suppl. 2003;85:7–13.

    Article  CAS  PubMed  Google Scholar 

  41. Wirtz CR, Bonsanto MM, Knauth M, et al. Intraoperative magnetic resonance imaging to update interactive navigation in neurosurgery: method and preliminary experience. Comput Aided Surg. 1997;2(3–4):172–9.

    CAS  PubMed  Google Scholar 

  42. Black PM, Alexander 3rd E, Martin C, et al. Craniotomy for tumor treatment in an intraoperative magnetic resonance imaging unit. Neurosurgery. 1999;45(3):423–31; discussion 431–23.

    Article  CAS  PubMed  Google Scholar 

  43. Nabavi A, Mamisch CT, Gering DT, et al. Image-guided therapy and intraoperative MRI in neurosurgery. Minim Invasive Ther Allied Technol. 2000;9(3–4):277–86.

    CAS  PubMed  Google Scholar 

  44. Samset E, Hirschberg H. Neuronavigation in intraoperative MRI. Comput Aided Surg. 1999;4(4):200–7.

    Article  CAS  PubMed  Google Scholar 

  45. Gering DT, Nabavi A, Kikinis R, et al. An integrated visualization system for surgical planning and guidance using image fusion and an open MR. J Magn Reson Imaging. 2001;13(6):967–75.

    Article  CAS  PubMed  Google Scholar 

  46. Jolesz FA. Intraoperative imaging in neurosurgery: where will the future take us? Acta Neurochir Suppl. 2011;109:21–5.

    Article  PubMed  Google Scholar 

  47. Nabavi A, Stark AM, Doerner L, Mehdorn MH. Surgical navigation with intraoperative imaging: special OR concepts. In: Quinones-Hinojosa A, Schmidek H, Roberts D, editors. Schmidek and sweet’s operative neurosurgical techniques: indications, methods and results. Philadelphia: Elsevier. 2012;1:12–20

    Google Scholar 

  48. Jolesz FA, Nabavi A, Kikinis R. Integration of interventional MRI with computer-assisted surgery. J Magn Reson Imaging. 2001;13(1):69–77.

    Article  CAS  PubMed  Google Scholar 

  49. Rachinger J, von Keller B, Ganslandt O, Fahlbusch R, Nimsky C. Application accuracy of automatic registration in frameless stereotaxy. Stereotact Funct Neurosurg. 2006;84(2–3):109–17.

    Article  PubMed  Google Scholar 

  50. Krueger S, Wolff S, Schmitgen A, et al. Fast and accurate automatic registration for MR-guided procedures using active microcoils. IEEE Trans Med Imaging. 2007;26(3):385–92.

    Article  PubMed  Google Scholar 

  51. Nabavi A, Dorner L, Stark AM, Mehdorn HM. Intraoperative MRI with 1.5 Tesla in neurosurgery. Neurosurg Clin N Am. 2009;20(2):163–71.

    Article  PubMed  Google Scholar 

  52. Nabavi A, Thurm H, Zountsas B, et al. Five-aminolevulinic acid for fluorescence-guided resection of recurrent malignant gliomas: a phase ii study. Neurosurgery. 2009;65(6):1070–6; discussion 1076–7.

    Article  PubMed  Google Scholar 

  53. Nabavi A, Goebel S, Doerner L, Warneke N, Ulmer S, Mehdorn M. Awake craniotomy and intraoperative magnetic resonance imaging: patient selection, preparation, and technique. Top Magn Reson Imaging. 2009;19(4):191–6.

    Article  PubMed  Google Scholar 

  54. Nimsky C, von Keller B, Schlaffer S, et al. Updating navigation with intraoperative image data. Top Magn Reson Imaging. 2009;19(4):197–204.

    Article  PubMed  Google Scholar 

  55. Miga MI, Paulsen KD, Lemery JM, et al. Model-updated image guidance: initial clinical experiences with gravity-induced brain deformation. IEEE Trans Med Imaging. 1999;18(10):866–74.

    Article  CAS  PubMed  Google Scholar 

  56. Ji S, Hartov A, Roberts D, Paulsen K. Data assimilation using a gradient descent method for estimation of intraoperative brain deformation. Med Image Anal. 2009;13(5):744–56.

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgement

Without the motivation and support of the MRT-Teams in Boston and Kiel neither the clinical routine, nor the data sampling for the scientific analyses would have been possible. The work with the “double doughnut” was done from 1998-2000 at the Brigham and Women´s Hospital (under the tutelage of FA. Jolesz, R. Kikinis, P. McL. Black). The 3D Slicer (programmed by D. Gering) was used for navigation and 3D analyses. In Kiel the program was started in 2005 (Chair: H.M. Mehdorn). IGT is a multidisciplinary effort, involving a lot of colleagues who turned friends over the years! The authors extend their gratitude to all of them.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arya Nabavi MD, PhD, MaHM .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Nabavi, A., Handels, H. (2014). Brain Shift and Updated Intraoperative Navigation with Intraoperative MRI. In: Jolesz, F. (eds) Intraoperative Imaging and Image-Guided Therapy. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7657-3_35

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7657-3_35

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-7656-6

  • Online ISBN: 978-1-4614-7657-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics