Skip to main content

Modelling Areal Data

  • Chapter
  • First Online:
Book cover Applied Spatial Data Analysis with R

Part of the book series: Use R! ((USE R,volume 10))

Abstract

Spatial data are often observed on polygon entities with defined boundaries. The polygon boundaries are defined by the researcher in some fields of study, may be arbitrary in others and may be administrative boundaries created for very different purposes in others again. The observed data are frequently aggregations within the boundaries, such as population counts. The areal entities may themselves constitute the units of observation, for example when studying local government behaviour where decisions are taken at the level of the entity, for example setting local tax rates. By and large, though, areal entities are aggregates, bins, used to tally measurements, like voting results at polling stations. Very often, the areal entities are an exhaustive tessellation of the study area, leaving no part of the total area unassigned to an entity. Of course, areal entities may be made up of multiple geometrical entities, such as islands belonging to the same county; they may also surround other areal entities completely, and may contain holes, like lakes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The BARD package for automated redistricting and heuristic exploration of redistricter revealed preference is an example of the use of R for studying this problem.

  2. 2.

    The boundaries have been projected from geographical coordinates to UTM zone 18.

  3. 3.

    http://geodacenter.asu.edu/, Anselin et al. (2006).

  4. 4.

    http://www.spatial-econometrics.com

  5. 5.

    In spatial econometrics, the abbreviation SAR means Spatial Autoregressive, and refers to the spatial lag model defined later in this chapter on p. 81.

  6. 6.

    The fitted coefficient values of the weighted CAR model do not exactly reproduce those of Waller and Gotway (2004, p. 379), although the spatial coefficient is reproduced.

  7. 7.

    Full details of the test procedures can be found in the references to the function documentation in lmtest and sandwich.

  8. 8.

    One expects the spatial lag model and its extensions to propose a hypothesis of spillover between observations of the response variable, such as contagion or competition, which is not the case for these leukemia incidence rates; the hypothesised spatial process is modelled by distances from TCE sites (the PEXPOSURE variable).

References

  • Anselin, L. (1988). Spatial Econometrics: Methods and Models. Kluwer, Dordrecht.

    Book  Google Scholar 

  • Anselin, L. (2002). Under the hood: Issues in the specification and interpretation of spatial regression models. Agricultural Economics, 27:247–267.

    Article  Google Scholar 

  • Anselin, L., Bera, A. K., Florax, R., and Yoon, M. J. (1996). Simple diagnostic tests for spatial dependence. Regional Science and Urban Economics, 26:77–104.

    Article  Google Scholar 

  • Anselin, L. and Lozano-Gracia, N. (2008). Errors in variables and spatial effects in hedonic house price models of ambient air quality. Empirical Economics, 34:5–34.

    Article  Google Scholar 

  • Anselin, L., Syabri, I., and Kho, Y. (2006). GeoDa: An introduction to spatial data analysis. Geographical Analysis, 38:5–22.

    Article  Google Scholar 

  • Arraiz, I., Drukker, D. M., Kelejian, H. H., and Prucha, I. R. (2010). A spatial Cliff-Ord-type model with heteroskedastistic innovations: small and large sample results. Journal of Regional Science, 50:592–614.

    Article  Google Scholar 

  • Assunção, R. and Reis, E. A. (1999). A new proposal to adjust Moran’s I for population density. Statistics in Medicine, 18:2147–2162.

    Article  Google Scholar 

  • Banerjee, S., Carlin, B. P., and Gelfand, A. E. (2004). Hierarchical Modeling and Analysis for Spatial Data. Chapman & Hall/CRC, Boca Raton/ London.

    MATH  Google Scholar 

  • Bavaud, F. (1998). Models for spatial weights: a systematic look. Geographical Analysis, 30:153–171.

    Article  Google Scholar 

  • Best, N., Cowles, M. K., and Vines, K. (1995). CODA: Convergence diagnosis and output analysis software for Gibbs sampling output, Version 0.30. Technical report, MRC Biostatistics Unit, Cambridge.

    Google Scholar 

  • Bivand, R. S. (2002). Spatial econometrics functions in R : Classes and methods. Journal of Geographical Systems, 4:405–421.

    Article  Google Scholar 

  • Bivand, R. S. (2006). Implementing spatial data analysis software tools in R . Geographical Analysis, 38:23–40.

    Article  Google Scholar 

  • Bivand, R. S. (2008). Implementing representations of space in economic geography. Journal of Regional Science, 48:1–27.

    Article  Google Scholar 

  • Bivand, R. S. (2010). Exploratory spatial data analysis. In Fischer, M. and Getis, A., editors, Handbook of Applied Spatial Analysis, pages 219–254. Springer, Heidelberg. pp. 36.

    Google Scholar 

  • Bivand, R. S., Hauke, J., and Kossowski, T. (2013). Computing the Jacobian in Gaussian spatial autoregressive models: an illustrated comparison of available methods. Geographical Analysis, 45:150–179.

    Article  Google Scholar 

  • Bivand, R. S., Müller, W., and Reder, M. (2009). Power calculations for global and local Moran’s I. Computational Statistics and Data Analysis, 53:2859–2872.

    Article  MathSciNet  MATH  Google Scholar 

  • Bivand, R. S. and Portnov, B. A. (2004). Exploring spatial data analysis techniques using R : the case of observations with no neighbours. In Anselin, L., Florax, R. J. G. M., and Rey, S. J., editors, Advances in Spatial Econometrics: Methodology, Tools, Applications, pages 121–142. Springer, Berlin.

    Google Scholar 

  • Borcard, D., Gillet, F., and Legendre, P. (2011). Numerical Ecology with R . Springer, New York.

    Google Scholar 

  • Chun, Y. and Griffith, D. A. (2013). Spatial Statistics & Geostatistics. Sage, Thousand Oaks, CA.

    Google Scholar 

  • Cliff, A. D. and Ord, J. K. (1973). Spatial Autocorrelation. Pion, London.

    Google Scholar 

  • Cliff, A. D. and Ord, J. K. (1981). Spatial Processes. Pion, London.

    MATH  Google Scholar 

  • Cressie, N. (1993). Statistics for Spatial Data, Revised Edition. John Wiley & Sons, New York.

    Google Scholar 

  • Croissant, Y. and Millo, G. (2008). Panel data econometrics in R : The plm package. Journal of Statistical Software, 27:1–43.

    Google Scholar 

  • Dormann, C., McPherson, J., Araújo, M., Bivand, R., Bolliger, J., Carl, G., Davies, R., Hirzel, A., Jetz, W., Kissling, D., Kühn, I., Ohlemüller, R., Peres-Neto, P., Reineking, B., Schröder, B., Schurr, F., and Wilson, R. (2007). Methods to account for spatial autocorrelation in the analysis of species distributional data: a review. Ecography, 30:609–628.

    Article  Google Scholar 

  • Dray, S., Legendre, P., and Peres-Neto, P. R. (2006). Spatial modeling: a comprehensive framework for principle coordinate analysis of neighbor matrices (PCNM). Ecological Modelling, 196:483–493.

    Article  Google Scholar 

  • Dray, S., Pélissier, R., Couteron, P., Fortin, M., Legendre, P., Peres-Neto, P. R., Bellier, E., Bivand, R., Blanchet, F. G., De Cáceres, M., Dufour, A., Heegaard, E., Jombart, T., Munoz, F., Oksanen, J., Thioulouse, J., and Wagner, H. H. (2012). Community ecology in the age of multivariate multiscale spatial analysis. Ecological Monographs, 82:257–275.

    Article  Google Scholar 

  • Elhorst, J. P. (2010). Applied spatial econometrics: Raising the bar. Spatial Economic Analysis, 5:9–28.

    Article  Google Scholar 

  • Folmer, E. O., Olff, H., and Piersma, T. (2012). The spatial distribution of flocking foragers: disentangling the effects of food availability, interference and conspecific attraction by means of spatial autoregressive modeling. Oikos, 121:551–561.

    Article  Google Scholar 

  • Fortin, M.-J. and Dale, M. (2005). Spatial Analysis: A Guide for Ecologists. Cambridge University Press, Cambridge.

    Google Scholar 

  • Fotheringham, A. S., Brunsdon, C., and Charlton, M. E. (2002). Geographically Weighted Regression: The Analysis of Spatially Varying Relationships. Wiley, Chichester.

    Google Scholar 

  • Griffith, D. A. (1995). Some guidelines for specifying the geographic weights matrix contained in spatial statistical models. In Arlinghaus, S. L. and Griffith, D. A., editors, Practical Handbook of Spatial Statistics, pages 65–82. CRC Press, Boca Raton.

    Google Scholar 

  • Griffith, D. A. and Peres-Neto, P. R. (2006). Spatial modeling in ecology: the flexibility of eigenfunction spatial analyses. Ecology, 87:2603–2613.

    Article  Google Scholar 

  • Haining, R. P. (2003). Spatial Data Analysis: Theory and Practice. Cambridge University Press, Cambridge.

    Book  Google Scholar 

  • Hastie, T. and Tibshirani, R. (1990). Generalised Additive Models. Chapman & Hall, London.

    Google Scholar 

  • Hepple, L. W. (1998). Exact testing for spatial autocorrelation among regression residuals. Environment and Planning A, 30:85–108.

    Article  Google Scholar 

  • Hothorn, T., Müller, J., Schröder, B., Kneib, T., and Brandl, R. (2011). Decomposing environmental, spatial, and spatiotemporal components of species distributions. Ecological Monographs, 81:329–347.

    Article  Google Scholar 

  • Johnston, J. and DiNardo, J. (1997). Econometric Methods. McGraw Hill, New York.

    Google Scholar 

  • Kelejian, H. H., Murrell, P., and Shepotylo, O. (2013). Spatial spillovers in the development of institutions. Journal of Development Economics, 101:297–315.

    Article  Google Scholar 

  • Kelejian, H. H. and Prucha, I. R. (2007). HAC estimation in a spatial framework. Journal of Econometrics, 140:131–154.

    Article  MathSciNet  Google Scholar 

  • Kelejian, H. H. and Prucha, I. R. (2010). Specification and estimation of spatial autoregressive models with autoregressive and heteroskedastic disturbances. Journal of Econometrics, 157:53–67.

    Article  MathSciNet  Google Scholar 

  • Kelejian, H. H., Tavlas, G., and Hondroyiannis, G. (2006). A spatial modelling approach to contagion among emerging economies. Open Economies Review, 17:423–441.

    Article  MATH  Google Scholar 

  • Kneib, T., Hothorn, T., and Tutz, G. (2009). Variable selection and model choice in geoadditive regression models. Biometrics, 65(2):626–634.

    Article  MathSciNet  MATH  Google Scholar 

  • LeSage, J. and Fischer, M. (2008). Spatial growth regression: Model specification, estimation and interpretation. Spatial Economic Analysis, 3:275–304.

    Article  Google Scholar 

  • LeSage, J. and Pace, R. (2009). Introduction to Spatial Econometrics. CRC Press, Boca Raton, FL.

    Book  MATH  Google Scholar 

  • Li, H., Calder, C. A., and Cressie, N. (2007). Beyond Moran’s I: testing for spatial dependence based on the spatial autoregressive model. Geographical Analysis, 39:357–375.

    Article  MATH  Google Scholar 

  • Li, H., Calder, C. A., and Cressie, N. (2012). One-step estimation of spatial dependence parameters: Properties and extensions of the APLE statistic. Journal of Multivariate Analysis, 105:68–84.

    Article  MathSciNet  MATH  Google Scholar 

  • Lloyd, C. D. (2007). Local Models for Spatial Analysis. CRC Press, Boca Raton.

    Google Scholar 

  • McMillen, D. P. (2012). Perspectives on spatial econometrics: Linear smoothing with structured models. Journal of Regional Science, 52:192–209.

    Article  Google Scholar 

  • McMillen, D. P. (2013). Quantile Regression for Spatial Data. Springer, Heidelberg.

    Book  Google Scholar 

  • Millo, G. and Piras, G. (2012). splm: Spatial panel data models in R . Journal of Statistical Software, 47(1):1–38.

    Google Scholar 

  • Ord, J. K. (1975). Estimation methods for models of spatial interaction. Journal of the American Statistical Association, 70:120–126.

    Article  MathSciNet  MATH  Google Scholar 

  • O’Sullivan, D. and Unwin, D. J. (2010). Geographical Information Analysis. Wiley, Hoboken, NJ.

    Book  Google Scholar 

  • Páez, A., Farber, S., and Wheeler, D. C. (2011). A simulation-based study of geographically weighted regression as a method for investigating spatially varying relationships. Environment and Planning A, 43:2992–3010.

    Article  Google Scholar 

  • Pinheiro, J. C. and Bates, D. M. (2000). Mixed-Effects Models in S and S-Plus. Springer, New York.

    Book  MATH  Google Scholar 

  • Piras, G. (2010). sphet: Spatial models with heteroskedastic innovations in R . Journal of Statistical Software, 35:1–21.

    Google Scholar 

  • Schabenberger, O. and Gotway, C. A. (2005). Statistical Methods for Spatial Data Analysis. Chapman & Hall/CRC, Boca Raton/London.

    MATH  Google Scholar 

  • Tiefelsdorf, M. (1998). Some practical applications of Moran’s I’s exact conditional distribution. Papers in Regional Science, 77:101–129.

    Google Scholar 

  • Tiefelsdorf, M. (2000). Modelling Spatial Processes: The Identification and Analysis of Spatial Relationships in Regression Residuals by Means of Moran’s I. Springer, Berlin.

    Google Scholar 

  • Tiefelsdorf, M. (2002). The saddlepoint approximation of Moran’s I and local Moran’s I i reference distributions and their numerical evaluation. Geographical Analysis, 34:187–206.

    Google Scholar 

  • Tiefelsdorf, M. and Griffith, D. A. (2007). Semiparametric filtering of spatial autocorrelation: The eigenvector approach. Environment and Planning A, 39:1193–1221.

    Article  Google Scholar 

  • Tiefelsdorf, M., Griffith, D. A., and Boots, B. (1999). A variance-stabilizing coding scheme for spatial link matrices. Environment and Planning A, 31:165–180.

    Article  Google Scholar 

  • Wall, M. M. (2004). A close look at the spatial structure implied by the CAR and SAR models. Journal of Statistical Planning and Inference, 121:311–324.

    Article  MathSciNet  MATH  Google Scholar 

  • Waller, L. A. and Gotway, C. A. (2004). Applied Spatial Statistics for Public Health Data. John Wiley & Sons, Hoboken, NJ.

    Book  MATH  Google Scholar 

  • Ward, M. D. and Gleditsch, K. S. (2008). Spatial regression models. Sage, Thousand Oaks, CA.

    Google Scholar 

  • Wheeler, D. and Tiefelsdorf, M. (2005). Multicollinearity and correlation among local regression coefficients in geographically weighted regression. Journal of Geographical Systems, 7:161–187.

    Article  Google Scholar 

  • Wheeler, D. C. (2007). Diagnostic tools and a remedial method for collinearity in geographically weighted regression. Environment and Planning A, 39:2464–2481.

    Article  Google Scholar 

  • Wood, S. (2006). Generalized Additive Models: An Introduction with R . Chapman & Hall/CRC, Boca Raton.

    Google Scholar 

  • Zeileis, A. (2004). Econometric computing with HC and HAC covariance matrix estimators. Journal of Statistical Software, 11(10):1–17.

    Google Scholar 

  • Zuur, A., Ieno, E. N., Walker, N., Saveiliev, A. A., and Smith, G. M. (2009). Mixed Effects Models and Extensions in Ecology with R. Springer, New York.

    Book  MATH  Google Scholar 

  • Zuur, A., Saveiliev, A. A., and N., E. (2012). Zero inflated models and generalized linear mixed models with R. Highland Statistics Ltd, Newburgh, UK.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Bivand, R.S., Pebesma, E., Gómez-Rubio, V. (2013). Modelling Areal Data. In: Applied Spatial Data Analysis with R. Use R!, vol 10. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7618-4_9

Download citation

Publish with us

Policies and ethics