Skip to main content

Stationary Distributions for Jump Processes with Inert Drift

  • Conference paper
  • First Online:
Malliavin Calculus and Stochastic Analysis

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 34))

Abstract

We analyze jump processes Z with “inert drift” determined by a “memory” process S. The state space of (Z, S) is the Cartesian product of the unit circle and the real line. We prove that the stationary distribution of (Z, S) is the product of the uniform probability measure and a Gaussian distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bass, R., Burdzy, K., Chen, Z., Hairer, M.: Stationary distributions for diffusions with inert drift. Probab. Theory Rel. Fields 146, 1–47 (2010)

    Article  MathSciNet  Google Scholar 

  2. Benaïm, M., Ledoux, M., Raimond, O.: Self-interacting diffusions. Probab. Theory Rel. Fields 122, 1–41 (2002)

    Article  MATH  Google Scholar 

  3. Benaïm, M., Raimond, O.: Self-interacting diffusions. II. Convergence in law. Ann. Inst. H. Poincaré Probab. Statist. 39, 1043–1055 (2003)

    Article  MATH  Google Scholar 

  4. Benaïm, M., Raimond, O.: Self-interacting diffusions. III. Symmetric interactions. Ann. Probab. 33, 1717–1759 (2005)

    Google Scholar 

  5. Bou-Rabee, N., Owhadi, H.: Ergodicity of Langevin processes with degenerate diffusion in momentums. Int. J. Pure Appl. Math. 45, 475–490 (2008)

    MathSciNet  MATH  Google Scholar 

  6. Burdzy, K., White, D.: A Gaussian oscillator. El. Comm. Probab. 9(10), 92–95 (2004)

    MathSciNet  MATH  Google Scholar 

  7. Burdzy, K., White, D.: Markov processes with product-form stationary distribution. El. Comm. Probab. 13, 614–627 (2008)

    MathSciNet  MATH  Google Scholar 

  8. Burdzy, K., Kulczycki, T., Schilling, R.: Stationary distributions for jump processes with memory. Ann. Inst. Henri Poincaré Probab. & Statist. 48, 609–630 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  9. Dynkin, E.B.: Markov Processes, vol. 1. Springer, Berlin (1965)

    MATH  Google Scholar 

  10. Ethier, S.N., Kurtz, T.G.: Markov Processes: Characterization and Convergence. Wiley, New York (1986)

    Book  MATH  Google Scholar 

  11. Glover, J.: Markov functions. Ann. Inst. Poincaré B 27, 221–238 (1991)

    MathSciNet  MATH  Google Scholar 

  12. Kunita, H.: SDEs based on Lévy processes and stochastic flows of diffeomorphisms. In: Rao, M.M. (ed.) Real and Stochastic Analysis, pp. 305–374. Birkhäuser, New York (2005)

    Google Scholar 

  13. Lachal, A.: Applications de la théorie des excursions à l’intégrale du mouvement brownien. Sém. Probab. XXXVIII. Lecture Notes in Math, vol. 1801, pp. 109–195. Springer, Berlin (2003)

    Google Scholar 

  14. Protter, P.: Stochastic Integration and Differential Equations, 2nd edn. Springer, Berlin (2004)

    MATH  Google Scholar 

  15. Schilling, R.L., Schnurr, A.: The symbol associated with the solution of a stochastic differential equation. Electron. J. Probab. 15(43), 1369–1393 (2010)

    MathSciNet  MATH  Google Scholar 

  16. Sharpe, M.: General Theory of Markov Processes. Academic, Boston (1988)

    MATH  Google Scholar 

  17. Sheffield, S.: Gaussian free fields for mathematicians. Probab. Theory Rel. Fields 139, 521–541 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  18. Simon, T.: Support theorem for jump processes. Stoch. Proc. Appl. 89, 1–30 (2000)

    Article  MATH  Google Scholar 

  19. Sinai, Ya.G.: Topics in Ergodic Theory. Princeton University Press, Princeton (1994)

    Google Scholar 

Download references

Acknowledgements

K. Burdzy was supported in part by NSF grant DMS-0906743 and by grant N N201 397137, MNiSW, Poland. T. Kulczycki was supported in part by grant N N201 373136, MNiSW, Poland. R.L. Schilling was supported in part by DFG grant Schi 419/5–1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Burdzy .

Editor information

Editors and Affiliations

Additional information

Dedicated to David Nualart

Received 4/8/2011; Accepted 9/6/2011; Final 1/30/2012

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this paper

Cite this paper

Burdzy, K., Kulczycki, T., Schilling, R.L. (2013). Stationary Distributions for Jump Processes with Inert Drift. In: Viens, F., Feng, J., Hu, Y., Nualart , E. (eds) Malliavin Calculus and Stochastic Analysis. Springer Proceedings in Mathematics & Statistics, vol 34. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-5906-4_7

Download citation

Publish with us

Policies and ethics