Skip to main content

Model-Based and Model-Free Mechanisms of Human Motor Learning

  • Conference paper
  • First Online:
Book cover Progress in Motor Control

Part of the book series: Advances in Experimental Medicine and Biology ((volume 782))

Abstract

Motor learning can be framed theoretically as a problem of optimizing a movement policy in a potentially uncertain or changing environment. This is precisely the general problem studied in the field of reinforcement learning. Reinforcement learning theory proposes two distinct approaches to solving this general problem: Model-based approaches first identify the dynamics of the task or environment then use this knowledge to compute the optimal movement policy. Model-free approaches, by contrast, directly identify successful policies through a process of trial and error. Here, we review existing literature on motor control in the light of this distinction. Motor learning research in the last decade has been dominated by studies that elicit learning through adaptation paradigms and find the results to be consistent with a model-based framework. Studying the behavior of patients in such adaptation paradigms has implicated the cerebellum as prime candidate for the neural substrate of the internal models that sub serve model-based control. A growing body of experimental results, however, demonstrates that not all of motor learning in conventional paradigms can be explained within model-based frameworks, but can be understood in terms of an additional component of learning driven by model-free reinforcement of successful actions. We conclude that the brain maintains distinct model-based and model-free learning systems, with distinct neural substrates, which act in competitive balance to direct behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ariff G, Donchin O, Nanayakkara T, Shadmehr R (2002) A real-time state predictor in motor control: study of saccadic eye movements during unseen reaching movements. J Neurosci 22:7721–7729

    PubMed  CAS  Google Scholar 

  • Avila I, Reilly MP, Sanabria F, Posadas-Sanchez D, Chavez CL, Banerjee N, Killeen P, Castaneda E (2009) Modeling operant behavior in the Parkinsonian rat. Behav Brain Res 198:298–305

    Article  PubMed  Google Scholar 

  • Balleine BW, Dickinson A (1998) Goal-directed instrumental action: contingency and incentive learning and their cortical substrates. Neuropharmacology 37:407–419

    Article  PubMed  CAS  Google Scholar 

  • Balleine BW, O’Doherty JP (2010) Human and rodent homologies in action control: corticostriatal determinants of goal-directed and habitual action. Neuropsychopharmacology 35:48–69

    Article  PubMed  Google Scholar 

  • Bastian AJ (2006) Learning to predict the future: the cerebellum adapts feedforward movement control. Curr Opin Neurobiol 16:645–649

    Article  PubMed  CAS  Google Scholar 

  • Bedard P, Sanes JN (2011) Basal ganglia-dependent processes in recalling learned visual-motor adaptations. Exp Brain Res 209:385–393

    Article  PubMed  Google Scholar 

  • Bertsekas DP (1996) Dynamic programming and optimal control: Athena Scientific

    Google Scholar 

  • Carmena JM, Lebedev MA, Crist RE, O’Doherty JE, Santucci DM, Dimitrov DF, Patil PG, Henriquez CS, Nicolelis MA (2003) Learning to control a brain-machine interface for reaching and grasping by primates. PLoS Biol 1:E42

    Google Scholar 

  • Chen-Harris H, Joiner WM, Ethier V, Zee DS, Shadmehr R (2008) Adaptive control of saccades via internal feedback. J Neurosci 28:2804–2813

    Article  PubMed  CAS  Google Scholar 

  • Classen J, Liepert J, Wise SP, Hallett M, Cohen LG (1998) Rapid plasticity of human cortical movement representation induced by practice. J Neurophysiol 79:1117–1123

    PubMed  CAS  Google Scholar 

  • Conditt MA, Gandolfo F, Mussa-Ivaldi FA (1997) The motor system does not learn the dynamics of the arm by rote memorization of past experience. J Neurophysiol 78:554–560

    PubMed  CAS  Google Scholar 

  • Criscimagna-Hemminger SE, Bastian AJ, Shadmehr R (2010) Size of error affects cerebellar contributions to motor learning. J Neurophysiol 103:2275–2284

    Article  PubMed  Google Scholar 

  • Daw ND, Niv Y, Dayan P (2005) Uncertainty-based competition between prefrontal and dorsolateral striatal systems for behavioral control. Nat Neurosci 8:1704–1711

    Article  PubMed  CAS  Google Scholar 

  • Dayan P (2009) Goal-directed control and its antipodes. Neural Netw 22:213–219

    Article  PubMed  Google Scholar 

  • Diedrichsen J, Verstynen T, Lehman SL, Ivry RB (2005) Cerebellar involvement in anticipating the consequences of self-produced actions during bimanual movements. J Neurophysiol 93:801–812

    Article  PubMed  Google Scholar 

  • Diedrichsen J, White O, Newman D, Lally N (2010) Use-dependent and error-based learning of motor behaviors. J Neurosci 30:5159–5166

    Article  PubMed  CAS  Google Scholar 

  • Donchin O, Francis JT, Shadmehr R (2003) Quantifying generalization from trial-by-trial behavior of adaptive systems that learn with basis functions: theory and experiments in human motor control. J Neurosci 23:9032–9045

    PubMed  CAS  Google Scholar 

  • Donchin O, Rabe K, Diedrichsen J, Lally N, Schoch B, Gizewski ER, Timmann D (2011) Cerebellar regions involved in adaptation to force field and visuomotor perturbation. J Neurophysiol 107(1):134–47

    Article  PubMed  Google Scholar 

  • Doya K (1999) What are the computations of the cerebellum, the basal ganglia and the cerebral cortex? Neural Netw 12:961–974

    Article  PubMed  Google Scholar 

  • Fermin A, Yoshida T, Ito M, Yoshimoto J, Doya K (2010) Evidence for model-based action planning in a sequential finger movement task. J Mot Behav 42:371–379

    Article  PubMed  Google Scholar 

  • Flanagan JR, Wing AM (1997) The role of internal models in motion planning and control: evidence from grip force adjustments during movements of hand-held loads. J Neurosci 17:1519–1528

    PubMed  CAS  Google Scholar 

  • Frank MJ, Seeberger LC, O’Reilly R C (2004) By carrot or by stick: cognitive reinforcement learning in parkinsonism. Science 306:1940–1943

    Article  PubMed  CAS  Google Scholar 

  • Franklin DW, Burdet E, Tee KP, Osu R, Chew CM, Milner TE, Kawato M (2008) CNS learns stable, accurate, and efficient movements using a simple algorithm. J Neurosci 28:11165–11173

    Article  PubMed  CAS  Google Scholar 

  • Galea JM, Vazquez A, Pasricha N, de Xivry JJ, Celnik P (2011) Dissociating the roles of the cerebellum and motor cortex during adaptive learning: the motor cortex retains what the cerebellum learns. Cereb Cortex 21:1761–1770

    Article  PubMed  Google Scholar 

  • Gentner R, Gorges S, Weise D, aufm Kampe K, Buttmann M, Classen J (2010) Encoding of motor skill in the corticomuscular system of musicians. Curr Biol 20:1869–1874

    Article  PubMed  CAS  Google Scholar 

  • Glascher J, Daw N, Dayan P, O’Doherty JP (2010) States versus rewards: dissociable neural prediction error signals underlying model-based and model-free reinforcement learning. Neuron 66:585–595

    Article  PubMed  CAS  Google Scholar 

  • Hosp JA, Pekanovic A, Rioult-Pedotti MS, Luft AR (2011) Dopaminergic projections from midbrain to primary motor cortex mediate motor skill learning. J Neurosci 31:2481–2487

    Article  PubMed  CAS  Google Scholar 

  • Huang VS, Haith A, Mazzoni P, Krakauer JW (2011) Rethinking motor learning and savings in adaptation paradigms: model-free memory for successful actions combines with internal models. Neuron 70:787–801

    Article  PubMed  CAS  Google Scholar 

  • Izawa J, Shadmehr R (2011) Learning from sensory and reward prediction errors during motor adaptation. PLoS Comput Biol 7:e1002012

    Google Scholar 

  • Izawa J, Criscimagna-Hemminger SE, Shadmehr R (2011) Cerebellar Contributions to Learning Sensory Consequences of Action. J Neurosci 32(12):4230–4239

    Article  Google Scholar 

  • Jax SA, Rosenbaum DA (2007) Hand path priming in manual obstacle avoidance: evidence that the dorsal stream does not only control visually guided actions in real time. J Exp Psychol 33:425–441

    Google Scholar 

  • Jordan MIaR, D.E. (1992) Forward models: Supervised learning with a distal teacher. Cognitive Sci 16:307–354

    Article  Google Scholar 

  • Kawato M, Gomi H (1992) A computational model of four regions of the cerebellum based on feedback-error learning. Biol Cybern 68:95–103

    Article  PubMed  CAS  Google Scholar 

  • Killcross S, Coutureau E (2003) Coordination of actions and habits in the medial prefrontal cortex of rats. Cereb Cortex 13:400–408

    Article  PubMed  Google Scholar 

  • Krakauer JW, Ghilardi MF, Ghez C (1999) Independent learning of internal models for kinematic and dynamic control of reaching. Nat Neurosci 2:1026–1031

    Article  PubMed  CAS  Google Scholar 

  • Krakauer JW, Pine ZM, Ghilardi MF, Ghez C (2000) Learning of visuomotor transformations for vectorial planning of reaching trajectories. J Neurosci 20:8916–8924

    PubMed  CAS  Google Scholar 

  • Lackner JR, Dizio P (1994) Rapid adaptation to Coriolis force perturbations of arm trajectory. J Neurophysiol 72:299–313

    PubMed  CAS  Google Scholar 

  • Leow LA, Loftus AM and Hammond GR (2012) Impaired savings despite intact initial learning of motor adaptation in Parkinson’s disease. Exp Brain Res 2:295–304

    Article  Google Scholar 

  • Marinelli L, Crupi D, Di Rocco A, Bove M, Eidelberg D, Abbruzzese G, Ghilardi MF (2009) Learning and consolidation of visuo-motor adaptation in Parkinson’s disease. Parkinsonism Relat Disord 15:6–11

    Article  PubMed  Google Scholar 

  • Martin TA, Keating JG, Goodkin HP, Bastian AJ, Thach WT (1996) Throwing while looking through prisms. I. Focal olivocerebellar lesions impair adaptation. Brain 119 (4):1183–1198

    Article  PubMed  Google Scholar 

  • Maschke M, Gomez CM, Ebner TJ, Konczak J (2004) Hereditary cerebellar ataxia progressively impairs force adaptation during goal-directed arm movements. J Neurophysiol 91:230–238

    Article  PubMed  Google Scholar 

  • Mazzoni P, Krakauer JW (2006) An implicit plan overrides an explicit strategy during visuomotor adaptation. J Neurosci 26:3642–3645

    Article  PubMed  CAS  Google Scholar 

  • McGuire LM, Sabes PN (2009) Sensory transformations and the use of multiple reference frames for reach planning. Nat Neurosci 12:1056–1061

    Article  PubMed  CAS  Google Scholar 

  • Medina JF (2011) The multiple roles of Purkinje cells in sensori-motor calibration: to predict, teach and command. Curr Opin Neurobiol 21:616–622

    Article  PubMed  CAS  Google Scholar 

  • Mehta B, Schaal S (2002) Forward models in visuomotor control. J Neurophysiol 88:942–953

    PubMed  Google Scholar 

  • Miall RC, Christensen LO, Cain O, Stanley J (2007) Disruption of state estimation in the human lateral cerebellum. PLoS Biol 5:e316

    Google Scholar 

  • Montague PR, Dayan P, Sejnowski TJ (1996) A framework for mesencephalic dopamine systems based on predictive Hebbian learning. J Neurosci 16:1936–1947

    PubMed  CAS  Google Scholar 

  • Mosier KM, Scheidt RA, Acosta S, Mussa-Ivaldi FA (2005) Remapping hand movements in a novel geometrical environment. J Neurophysiol 94:4362–4372

    Article  PubMed  Google Scholar 

  • Munuera J, Morel P, Duhamel JR, Deneve S (2009) Optimal sensorimotor control in eye movement sequences. J Neurosci 29:3026–3035

    Article  PubMed  CAS  Google Scholar 

  • Nagengast AJ, Braun DA, Wolpert DM (2009) Optimal control predicts human performance on objects with internal degrees of freedom. PLoS Comput Biol 5:e1000419

    Google Scholar 

  • Nowak DA, Hermsdorfer J, Rost K, Timmann D, Topka H (2004) Predictive and reactive finger force control during catching in cerebellar degeneration. Cerebellum 3:227–235

    Article  PubMed  Google Scholar 

  • Pasalar S, Roitman AV, Durfee WK, Ebner TJ (2006) Force field effects on cerebellar Purkinje cell discharge with implications for internal models. Nat Neurosci 9:1404–1411

    Article  PubMed  CAS  Google Scholar 

  • Pekny SE, Criscimagna-Hemminger SE, Shadmehr R (2011) Protection and expression of human motor memories. J Neurosci 31:13829–13839

    Article  PubMed  CAS  Google Scholar 

  • Rabe K, Livne O, Gizewski ER, Aurich V, Beck A, Timmann D, Donchin O (2009) Adaptation to visuomotor rotation and force field perturbation is correlated to different brain areas in patients with cerebellar degeneration. J Neurophysiol 101:1961–1971

    Article  PubMed  CAS  Google Scholar 

  • Reis J, Schambra HM, Cohen LG, Buch ER, Fritsch B, Zarahn E, Celnik PA, Krakauer JW (2009) Noninvasive cortical stimulation enhances motor skill acquisition over multiple days through an effect on consolidation. Proc Natl Acad Sci 106:1590–1595

    Article  PubMed  CAS  Google Scholar 

  • Roitman AV, Pasalar S, Johnson MT, Ebner TJ (2005) Position, direction of movement, and speed tuning of cerebellar Purkinje cells during circular manual tracking in monkey. J Neurosci 25:9244–9257

    Article  PubMed  CAS  Google Scholar 

  • Rost K, Nowak DA, Timmann D, Hermsdorfer J (2005) Preserved and impaired aspects of predictive grip force control in cerebellar patients. Clin Neurophysiol 116:1405–1414

    Article  PubMed  Google Scholar 

  • Schaefer SY, Shelly IL, Thoroughman KA (2012) Beside the point: motor adaptation without feedback-based error correction in task-irrelevant conditions. J Neurophysiol 107(4):1247–56

    Article  PubMed  Google Scholar 

  • Schultz W, Dayan P, Montague PR (1997) A neural substrate of prediction and reward. Science 275:1593–1599.

    Article  PubMed  CAS  Google Scholar 

  • Shadmehr R, Mussa-Ivaldi FA (1994) Adaptive representation of dynamics during learning of a motor task. J Neurosci 14:3208–3224

    PubMed  CAS  Google Scholar 

  • Shadmehr R, Krakauer JW (2008) A computational neuroanatomy for motor control. Exp Brain Res 185:359–381

    Article  PubMed  Google Scholar 

  • Shadmehr R, Smith MA, Krakauer JW (2010) Error correction, sensory prediction, and adaptation in motor control. Annu Rev Neurosci 33:89–108

    Article  PubMed  CAS  Google Scholar 

  • Shmuelof L, Krakauer JW, Mazzoni P (2012) How is a motor skill learned? Change and invariance at the levels of task success and trajectory control. J Neurophysiol 08(2):578–94

    Article  Google Scholar 

  • Shohamy D, Myers CE, Grossman S, Sage J, Gluck MA (2005) The role of dopamine in cognitive sequence learning: evidence from Parkinson’s disease. Behav Brain Res 156:191–199

    Article  PubMed  CAS  Google Scholar 

  • Simani MC, McGuire LM, Sabes PN (2007) Visual-shift adaptation is composed of separable sensory and task-dependent effects. J Neurophysiol 98:2827–2841

    Article  PubMed  CAS  Google Scholar 

  • Smith MA, Shadmehr R (2005) Intact ability to learn internal models of arm dynamics in Huntington’s disease but not cerebellar degeneration. J Neurophysiol 93:2809–2821

    Article  PubMed  Google Scholar 

  • Squire LR (1992) Memory and the hippocampus: a synthesis of findings with rats, monkeys and humans. Psychol Rev 99:195–231

    Article  PubMed  CAS  Google Scholar 

  • Sternad D, Abe MO, Hu X, Muller H (2011) Neuromotor noise, error tolerance and velocity-dependent costs in skilled performance. PLoS Comput Biol 7:e1002159

    Google Scholar 

  • Sutton RS, Barto AG (1998) Reinforcement learning: An introduction. Cambridge Univ Press

    Google Scholar 

  • Synofzik M, Thier P, Lindner A (2006) Internalizing agency of self-action: perception of one’s own hand movements depends on an adaptable prediction about the sensory action outcome. J Neurophysiol 96:1592–1601

    Article  PubMed  Google Scholar 

  • Synofzik M, Lindner A, Thier P (2008) The cerebellum updates predictions about the visual consequences of one’s behavior. Curr Biol 18:814–818

    Article  PubMed  CAS  Google Scholar 

  • Taylor JA, Ivry RB (2011) Flexible cognitive strategies during motor learning. PLoS Comput Biol 7:e1001096

    Google Scholar 

  • Taylor JA, Klemfuss NM, Ivry RB (2010) An explicit strategy prevails when the cerebellum fails to compute movement errors. Cerebellum 9:580–586

    Article  PubMed  Google Scholar 

  • Thoroughman KA, Shadmehr R (2000) Learning of action through adaptive combination of motor primitives. Nature 407:742–747

    Article  PubMed  CAS  Google Scholar 

  • Todorov E (2007) Optimal control theory. In: Bayesian brain: probabilistic approaches to neural coding, MIT Press, Cambridge, p 269–298

    Google Scholar 

  • Todorov E, Jordan MI (2002) Optimal feedback control as a theory of motor coordination. Nat Neurosci 5:1226–1235

    Article  PubMed  CAS  Google Scholar 

  • Tseng YW, Diedrichsen J, Krakauer JW, Shadmehr R, Bastian AJ (2007) Sensory prediction errors drive cerebellum-dependent adaptation of reaching. J Neurophysiol 98:54–62

    Article  PubMed  Google Scholar 

  • van der Meer MA, Redish AD (2011) Ventral striatum: a critical look at models of learning and evaluation. Curr Opin Neurobiol 21:387–392

    Article  PubMed  Google Scholar 

  • Verstynen T, Sabes PN (2011) How each movement changes the next: an experimental and theoretical study of fast adaptive priors in reaching. J Neurosci 31:10050–10059

    Article  PubMed  CAS  Google Scholar 

  • Wallman J, Fuchs AF (1998) Saccadic gain modification: visual error drives motor adaptation. J Neurophysiol 80:2405–2416

    PubMed  CAS  Google Scholar 

  • Wagner MJ, Smith MA (2008) Shared internal models for feedforward and feedback control. J Neurosci 28:10663–10673

    Article  PubMed  CAS  Google Scholar 

  • Wolpert DM, Miall RC (1996) Forward Models for Physiological Motor Control. Neural Netw 9:1265–1279

    Article  PubMed  Google Scholar 

  • Wolpert DM, Miall RC, Kawato M (1998) Internal models in the cerebellum. Trends Cogn Sci 2:338–347

    Article  PubMed  CAS  Google Scholar 

  • Wolpert DM, Diedrichsen J, Flanagan JR (2011) Principles of sensorimotor learning. Nat Rev Neurosci 12:739–751

    PubMed  CAS  Google Scholar 

  • Wong AL, Shelhamer M (2011) Sensorimotor adaptation signals are derived from realistic predictions of movement outcomes. J Neurophysiol 105(3):1130–40

    Article  PubMed  Google Scholar 

  • Xu-Wilson M, Chen-Harris H, Zee DS, Shadmehr R (2009) Cerebellar contributions to adaptive control of saccades in humans. J Neurosci 29:12930–12939

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adrian M. Haith .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this paper

Cite this paper

Haith, A.M., Krakauer, J.W. (2013). Model-Based and Model-Free Mechanisms of Human Motor Learning. In: Richardson, M., Riley, M., Shockley, K. (eds) Progress in Motor Control. Advances in Experimental Medicine and Biology, vol 782. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5465-6_1

Download citation

Publish with us

Policies and ethics