Skip to main content

Relationship of Other Cytoplasmic Ribonucleoprotein Bodies (cRNPB) to GW/P Bodies

  • Chapter
  • First Online:
Ten Years of Progress in GW/P Body Research

Part of the book series: Advances in Experimental Medicine and Biology ((volume 768))

Abstract

GW/P body components are involved in the post-transcriptional ­processing of messenger RNA (mRNA) through the RNA interference and 5′ → 3′ mRNA degradation pathways, as well as functioning in mRNA transport and stabilization. It is currently thought that the relevant mRNA silencing and degrading factors are partitioned to these cytoplasmic microdomains thus effecting post-transcriptional regulation and the prevention of accidental degradation of functional mRNA. Although much attention has focused on GW/P bodies, a variety of other cytoplasmic RNP bodies (cRNPB) also have highly specialized functions and have been shown to interact or co-localize with components of GW/P bodies. These cRNPB include neuronal transport RNP granules, stress granules, RNP-rich cytoplasmic germline granules or chromatoid bodies, sponge bodies, cytoplasmic prion protein-induced RNP granules, U bodies and TAM bodies. Of clinical relevance, autoantibodies directed against protein and miRNA components of GW/P bodies have been associated with autoimmune diseases, neurological diseases and cancer. Understanding the molecular function of GW/P bodies and their interactions with other cRNPB may provide clues to the etiology or pathogenesis of diseases associated with autoantibodies directed to these structures. This chapter will focus on the similarities and differences of the various cRNPB as an approach to understanding their functional relationships to GW/P bodies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aguzzi A, Polymenidou M (2004) Mammalian prion biology: one century of evolving concepts. Cell 116:313–327

    Article  PubMed  CAS  Google Scholar 

  • Aizer A, Brody Y, Ler LW, Sonenberg N, Singer RH, Shav-Tal Y (2008) The dynamics of mammalian P body transport, assembly and disassembly in vivo. Mol Biol Cell 19:4154–4166

    Article  PubMed  CAS  Google Scholar 

  • Anderson P, Kedersha N (2006) RNA granules. J Cell Biol 172:803–808

    Article  PubMed  CAS  Google Scholar 

  • Anderson P, Kedersha N (2008) Stress granules: the Tao of RNA triage. Trends Biochem Sci 33:141–150

    Article  PubMed  CAS  Google Scholar 

  • Anderson P, Kedersha N (2009a) RNA granules: post-transcriptional and epigenetic modulators of gene expression. Nat Rev Mol Cell Biol 10:430–436

    Article  PubMed  CAS  Google Scholar 

  • Anderson P, Kedersha N (2009b) Stress granules. Curr Biol 19:R397–R398

    Article  PubMed  CAS  Google Scholar 

  • Andrei MA, Ingelfinger D, Heintzmann R, Achsel T, Rivera-Pomar R, Luhrmann R (2005) A role for eIF4E and eIF4E-transporter in targeting mRNPs to mammalian processing bodies. RNA 11:717–727

    Article  PubMed  CAS  Google Scholar 

  • Antar LN, Dictenberg JB, Plociniak M, Afroz R, Bassell GJ (2005) Localization of FMRP-associated mRNA granules and requirement of microtubules for activity-dependent trafficking in hippocampal neurons. Genes Brain Behav 4:350–359

    Article  PubMed  CAS  Google Scholar 

  • Ares M Jr, Proudfoot NJ (2005) The Spanish connection: transcription and mRNA processing get even closer. Cell 120:163–166

    PubMed  CAS  Google Scholar 

  • Ashraf SI, Kunes S (2006) A trace of silence: memory and microRNA at the synapse. Curr Opin Neurobiol 16:535–539

    Article  PubMed  CAS  Google Scholar 

  • Baillat D, Shiekhattar R (2009) Functional dissection of the human TNRC6 (GW182-related) family of proteins. Mol Cell Biol 29:4144–4155

    Article  PubMed  CAS  Google Scholar 

  • Barbee SA, Estes PS, Cziko AM, Hillebrand J, Luedeman RA, Coller JM, Johnson N, Howlett IC, Geng C, Ueda R, Brand AH, Newbury SF, Wilhelm JE, Levine RB, Nakamura A, Parker R, Ramaswami M (2006) Staufen- and FMRP-containing neuronal RNPs are structurally and functionally related to somatic P bodies. Neuron 52:997–1009

    Article  PubMed  CAS  Google Scholar 

  • Bashkirov VI, Scherthan H, Solinger JA, Buerstedde JM, Heyer WD (1997) A mouse cytoplasmic exoribonuclease (mXRN1p) with preference for G4 tetraplex substrates. J Cell Biol 136:761–773

    Article  PubMed  CAS  Google Scholar 

  • Beaudoin S, Goggin K, Bissonnette C, Grenier C, Roucou X (2008) Aggresomes do not represent a general cellular response to protein misfolding in mammalian cells. BMC Cell Biol 9:59

    Article  PubMed  CAS  Google Scholar 

  • Behm-Ansmant I, Rehwinkel J, Doerks T, Stark A, Bork P, Izaurralde E (2006) mRNA degradation by miRNAs and GW182 requires both CCR4:NOT deadenylase and DCP1:DCP2 decapping complexes. Genes Dev 20:1885–1898

    Article  PubMed  CAS  Google Scholar 

  • Berleth T, Burri M, Thoma G, Bopp D, Richstein S, Frigerio G, Noll M, Nusslein-Volhard C (1988) The role of localization of bicoid RNA in organizing the anterior pattern of the Drosophila embryo. EMBO J 7:1749–1756

    PubMed  CAS  Google Scholar 

  • Bertrand E, Bordonne R (2004) Assembly and traffic of small nuclear RNPs. Prog Mol Subcell Biol 35:79–97

    Article  PubMed  Google Scholar 

  • Bhanji R, Eystathioy T, Chan EKL, Bloch DB, Fritzler MJ (2007) Clinical and serological features of patients with autoantibodies to GW/P bodies. Clin Immunol 123:247–256

    Article  CAS  Google Scholar 

  • Biggiogera M, Fakan S, Leser G, Martin TE, Gordon J (1990) Immunoelectron microscopical visualization of ribonucleoproteins in the chromatoid body of mouse spermatids. Mol Reprod Dev 26:150–158

    Article  PubMed  CAS  Google Scholar 

  • Bloch DB, Yu JH, Yang WH, Graeme-Cook F, Lindor KD, Viswanathan A, Bloch KD, Nakajima A (2005) The cytoplasmic dot staining pattern is detected in a subgroup of patients with primary biliary cirrhosis. J Rheumatol 32:477–483

    PubMed  Google Scholar 

  • Bolognani F, Perrone-Bizzozero NI (2008) RNA-protein interactions and control of mRNA stability in neurons. J Neurosci Res 86:481–489

    Article  PubMed  CAS  Google Scholar 

  • Brengues M, Teixeira D, Parker R (2005) Movement of eukaryotic mRNAs between polysomes and cytoplasmic processing bodies. Science 310:486–489

    Article  PubMed  CAS  Google Scholar 

  • Buchan JR, Muhlrad D, Parker R (2008) P bodies promote stress granule assembly in Saccharomyces cerevisiae. J Cell Biol 183:441–455

    Article  PubMed  CAS  Google Scholar 

  • Carmo-Fonseca M, Tollervey D, Pepperkok R, Barabino WML, Merdes A, Brunner C, Zamore PD, Green MR, Hurt E, Lamond AI (1991) Mammalian nuclei contain foci which are highly enriched in components of the pre-mRNA splicing machinery. EMBO J 10:196–206

    Google Scholar 

  • Cauchi RJ, Sanchez-Pulido L, Liu JL (2010) Drosophila SMN complex proteins Gemin2, Gemin3, and Gemin5 are components of U bodies. Exp Cell Res 316:2354–2364

    Article  PubMed  CAS  Google Scholar 

  • Chu CY, Rana TM (2006) Translation repression in human cells by microRNA-induced gene silencing requires RCK/p54. PLoS Biol 4:e210

    Article  PubMed  CAS  Google Scholar 

  • Chuma S, Hosokawa M, Kitamura K, Kasai S, Fujioka M, Hiyoshi M, Takamune K, Noce T, Nakatsuji N (2006) Tdrd1/Mtr-1, a tudor-related gene, is essential for male germ-cell differentiation and nuage/germinal granule formation in mice. Proc Natl Acad Sci U S A 103:15894–15899

    Article  PubMed  CAS  Google Scholar 

  • Chuma S, Hosokawa M, Tanaka T, Nakatsuji N (2009) Ultrastructural characterization of spermatogenesis and its evolutionary conservation in the germline: germinal granules in mammals. Mol Cell Endocrinol 306:17–23

    Article  PubMed  CAS  Google Scholar 

  • Collinge J (2001) Prion diseases of humans and animals: their causes and molecular basis. Annu Rev Neurosci 24:519–550

    Article  PubMed  CAS  Google Scholar 

  • Cougot N, Babajko S, Seraphin B (2004) Cytoplasmic foci are sites of mRNA decay in human cells. J Cell Biol 165:31–40

    Article  PubMed  CAS  Google Scholar 

  • Cougot N, Bhattacharyya SN, Tapia-Arancibia L, Bordonne R, Filipowicz W, Bertrand E, Rage F (2008) Dendrites of mammalian neurons contain specialized P-body-like structures that respond to neuronal activation. J Neurosci 28:13793–13804

    Article  PubMed  CAS  Google Scholar 

  • Ding L, Spencer A, Morita K, Han M (2005) The developmental timing regulator AIN-1 interacts with miRISCs and may target the argonaute protein ALG-1 to cytoplasmic P bodies in C. elegans. Mol Cell 19:437–447

    Article  PubMed  CAS  Google Scholar 

  • Ecroyd H, Sarradin P, Dacheux JL, Gatti JL (2004) Compartmentalization of prion isoforms within the reproductive tract of the ram. Biol Reprod 71:993–1001

    Article  PubMed  CAS  Google Scholar 

  • Eddy EM (1975) Germ plasm and the differentiation of the germ cell line. Int Rev Cytol 43:229–280

    Article  PubMed  CAS  Google Scholar 

  • Eulalio A, Behm-Ansmant I, Izaurralde E (2007) P bodies: at the crossroads of post-transcriptional pathways. Nat Rev Mol Cell Biol 8:9–22

    Article  PubMed  CAS  Google Scholar 

  • Eulalio A, Huntzinger E, Izaurralde E (2008) GW182 interaction with Argonaute is essential for miRNA-mediated translational repression and mRNA decay. Nat Struct Mol Biol 15:346–353

    Article  PubMed  CAS  Google Scholar 

  • Eulalio A, Helms S, Fritzsch C, Fauser M, Izaurralde E (2009a) A C-terminal silencing domain in GW182 is essential for miRNA function. RNA 15:1067–1077

    Article  PubMed  CAS  Google Scholar 

  • Eulalio A, Huntzinger E, Nishihara T, Rehwinkel J, Fauser M, Izaurralde E (2009b) Deadenylation is a widespread effect of miRNA regulation. RNA 15:21–32

    Article  PubMed  CAS  Google Scholar 

  • Eulalio A, Tritschler F, Buttner R, Weichenrieder O, Izaurralde E, Truffault V (2009c) The RRM domain in GW182 proteins contributes to miRNA-mediated gene silencing. Nucleic Acids Res 37:2974–2983

    Article  PubMed  CAS  Google Scholar 

  • Eulalio A, Tritschler F, Izaurralde E (2009d) The GW182 protein family in animal cells: new insights into domains required for miRNA-mediated gene silencing. RNA 15:1433–1442

    Article  PubMed  CAS  Google Scholar 

  • Eystathioy T, Chan EKL, Tenenbaum SA, Keene JD, Griffith KJ, Fritzler MJ (2002a) A ­phosphorylated cytoplasmic autoantigen, GW182, associates with a unique population of human mRNAs within novel cytoplasmic speckles. Mol Biol Cell 13:1338–1351

    Article  PubMed  CAS  Google Scholar 

  • Eystathioy T, Peebles C, Hamel JC, Vaughan JH, Chan EKL (2002b) Autoantibody to hLSm4 and the hepatameric LSm complex in anti-Sm sera. Arthritis Rheum 46:726–734

    Article  PubMed  CAS  Google Scholar 

  • Eystathioy T, Chan EKL, Yang Z, Takeuchi K, Mahler M, Luft LM, Zochodne DW, Fritzler MJ (2003a) Clinical and serological associations of autoantibodies to a novel cytoplasmic autoantigen, GW182 and GW bodies. J Mol Med 81:811–818

    Article  PubMed  CAS  Google Scholar 

  • Eystathioy T, Jakymiw A, Chan EKL, Séraphin B, Cougot N, Fritzler MJ (2003b) The GW182 protein co-localizes with mRNA degradation associated proteins hDcp1 and hLSm4 in cytoplasmic GW bodies. RNA 9:1171–1173

    Article  PubMed  CAS  Google Scholar 

  • Fenger-Gron M, Fillman C, Norrild B, Lykke-Andersen J (2005) Multiple processing body factors and the ARE binding protein TTP activate mRNA decapping. Mol Cell 20:905–915

    Article  PubMed  CAS  Google Scholar 

  • Fierro-Monti I, Mohammed S, Matthiesen R, Santoro R, Burns JS, Williams DJ, Proud CG, Kassem M, Jensen ON, Roepstorff P (2006) Quantitative proteomics identifies Gemin5, a scaffolding protein involved in ribonucleoprotein assembly, as a novel partner for eukaryotic initiation factor 4E. J Proteome Res 5:1367–1378

    Article  PubMed  CAS  Google Scholar 

  • Figueroa J, Burzio LO (1998) Polysome-like structures in the chromatoid body of rat spermatids. Cell Tissue Res 291:575–579

    Article  PubMed  CAS  Google Scholar 

  • Friedman RC, Farh KK, Burge CB, Bartel DP (2009) Most mammalian mRNAs are conserved targets of microRNAs. Genome Res 19:92–105

    Article  PubMed  CAS  Google Scholar 

  • Fritzler MJ (1996) Clinical relevance of autoantibodies in systemic rheumatic diseases. Mol Biol Rep 23:133–145

    Article  PubMed  CAS  Google Scholar 

  • Fujiwara Y, Komiya T, Kawabata H, Sato M, Fujimoto H, Furusawa M, Noce T (1994) Isolation of a DEAD-family protein gene that encodes a murine homolog of Drosophila vasa and its specific expression in germ cell lineage. Proc Natl Acad Sci U S A 91:12258–12262

    Article  PubMed  CAS  Google Scholar 

  • Gall JG (2000) Cajal bodies: the first 100 years. Annu Rev Cell Dev Biol 16:273–300

    Article  PubMed  CAS  Google Scholar 

  • Gallo CM, Munro E, Rasoloson D, Merritt C, Seydoux G (2008) Processing bodies and germ granules are distinct RNA granules that interact in C. elegans embryos. Dev Biol 323(1):76–87

    Article  PubMed  CAS  Google Scholar 

  • Gallois-Montbrun S, Kramer B, Swanson CM, Byers H, Lynham S, Ward M, Malim MH (2007) Antiviral protein APOBEC3G localizes to ribonucleoprotein complexes found in P bodies and stress granules. J Virol 81:2165–2178

    Article  PubMed  CAS  Google Scholar 

  • Gallouzi IE, Brennan CM, Stenberg MG, Swanson MS, Eversole A, Maizels N, Steitz JA (2000) HuR binding to cytoplasmic mRNA is perturbed by heat shock. Proc Natl Acad Sci U S A 97:3073–3078

    Article  PubMed  CAS  Google Scholar 

  • Gibbings DJ, Ciaudo C, Erhardt M, Voinnet O (2009) Multivesicular bodies associate with components of miRNA effector complexes and modulate miRNA activity. Nat Cell Biol 11:1143–1149

    Article  PubMed  CAS  Google Scholar 

  • Gilks N, Kedersha N, Ayodele M, Shen L, Stoecklin G, Dember LM, Anderson P (2004) Stress granule assembly is mediated by prion-like aggregation of TIA-1. Mol Biol Cell 15:5383–5398

    Article  PubMed  CAS  Google Scholar 

  • Gill T, Aulds J, Schmitt ME (2006) A specialized processing body that is temporally and asymmetrically regulated during the cell cycle in Saccharomyces cerevisiae. J Cell Biol 173:35–45

    Article  PubMed  CAS  Google Scholar 

  • Gold HA, Topper JN, Clayton DA, Craft J (1989) The RNA processing enzyme RNase MRP is identical to the Th RNP and related to RNase P. Science 245:1377–1380

    Article  PubMed  CAS  Google Scholar 

  • Gregory RI, Chendrimada TP, Cooch N, Shiekhattar R (2005) Human RISC couples microRNA biogenesis and posttranscriptional gene silencing. Cell 123:631–640

    Article  PubMed  CAS  Google Scholar 

  • Haraguchi CM, Mabuchi T, Hirata S, Shoda T, Hoshi K, Akasaki K, Yokota S (2005) Chromatoid bodies: aggresome-like characteristics and degradation sites for organelles of spermiogenic cells. J Histochem Cytochem 53:455–465

    Article  PubMed  CAS  Google Scholar 

  • Hegde RS, Mastrianni JA, Scott MR, DeFea KA, Tremblay P, Torchia M, DeArmond SJ, Prusiner SB, Lingappa VR (1998) A transmembrane form of the prion protein in neurodegenerative disease. Science 279:827–834

    Article  PubMed  CAS  Google Scholar 

  • Hess RA, Miller LA, Kirby JD, Margoliash E, Goldberg E (1993) Immunoelectron microscopic localization of testicular and somatic cytochromes c in the seminiferous epithelium of the rat. Biol Reprod 48:1299–1308

    Article  PubMed  CAS  Google Scholar 

  • Hillebrand J, Barbee SA, Ramaswami M (2007) P-body components, microRNA regulation, and synaptic plasticity. ScientificWorldJournal 7:178–190

    Article  PubMed  Google Scholar 

  • Hirokawa N (2006) mRNA transport in dendrites: RNA granules, motors, and tracks. J Neurosci 26:7139–7142

    Article  PubMed  CAS  Google Scholar 

  • Hosokawa M, Shoji M, Kitamura K, Tanaka T, Noce T, Chuma S, Nakatsuji N (2007) Tudor-related proteins TDRD1/MTR-1, TDRD6 and TDRD7/TRAP: domain composition, intracellular localization, and function in male germ cells in mice. Dev Biol 301:38–52

    Article  PubMed  CAS  Google Scholar 

  • Hoyle NP, Castelli LM, Campbell SG, Holmes LE, Ashe MP (2007) Stress-dependent relocalization of translationally primed mRNPs to cytoplasmic granules that are kinetically and spatially distinct from P-bodies. J Cell Biol 179:65–74

    Article  PubMed  CAS  Google Scholar 

  • Huang S, Spector DL (1992) U1 and U2 small nuclear RNAs are present in nuclear speckles. Proc Natl Acad Sci U S A 89:305–308

    Article  PubMed  CAS  Google Scholar 

  • Ingelfinger D, Arndt-Jovin DJ, Luhrmann R, Achsel T (2002) The human LSm1-7 proteins colocalize with the mRNA-degrading enzymes Dcp1/2 and Xrnl in distinct cytoplasmic foci. RNA 8:1489–1501

    PubMed  CAS  Google Scholar 

  • Ivanov PA, Chudinova EM, Nadezhdina ES (2003) Disruption of microtubules inhibits cytoplasmic ribonucleoprotein stress granule formation. Exp Cell Res 290:227–233

    Article  PubMed  CAS  Google Scholar 

  • Jakymiw A, Eystathioy T, Satoh M, Hamel JC, Fritzler MJ, Chan EKL (2005) Disruption of GW bodies impairs mammalian mRNA interference. Nat Cell Biol 7:1167–1174

    Article  CAS  Google Scholar 

  • Jakymiw A, Ikeda K, Fritzler MJ, Reeves WH, Satoh M, Chan EKL (2006) Autoimmune targeting of key components of RNA interference. Arthritis Res Ther 8:R87

    Article  PubMed  CAS  Google Scholar 

  • Jakymiw A, Pauley KM, Li S, Ikeda K, Lian S, Eystathioy T, Satoh M, Fritzler MJ, Chan EKL (2007) The role of GW/P bodies in RNA processing and silencing. J Cell Sci 120:1317–1323

    Article  PubMed  CAS  Google Scholar 

  • Karwan RM (1998) Further characterization of human RNase MRP RNase P and related autoantibodies. Mol Biol Rep 25:95–101

    Article  PubMed  CAS  Google Scholar 

  • Kedersha N, Anderson P (2002) Stress granules: sites of mRNA triage that regulate mRNA stability and translatability. Biochem Soc Trans 30:963–969

    Article  PubMed  CAS  Google Scholar 

  • Kedersha N, Anderson P (2007) Mammalian stress granules and processing bodies. Methods Enzymol 431:61–81

    Article  PubMed  CAS  Google Scholar 

  • Kedersha NL, Gupta M, Li W, Miller I, Anderson P (1999) RNA-binding proteins TIA-1 and TIAR link the phosphorylation of eIF-2 alpha to the assembly of mammalian stress granules. J Cell Biol 147:1431–1442

    Article  PubMed  CAS  Google Scholar 

  • Kedersha N, Stoecklin G, Ayodele M, Yacono P, Lykke-Andersen J, Fritzler MJ, Scheuner D, Kaufman RJ, Golan DE, Anderson P (2005) Stress granules and processing bodies are dynamically linked sites of mRNP remodeling. J Cell Biol 169:871–884

    Article  PubMed  CAS  Google Scholar 

  • Kiebler MA, Bassell GJ (2006) Neuronal RNA granules: movers and makers. Neuron 51:685–690

    Article  PubMed  CAS  Google Scholar 

  • Kikuchi Y, Kakeya T, Nakajima O, Sakai A, Ikeda K, Yamaguchi N, Yamazaki T, Tanamoto K, Matsuda H, Sawada J, Takatori K (2008) Hypoxia induces expression of a GPI-anchorless splice variant of the prion protein. FEBS J 275:2965–2976

    Article  PubMed  CAS  Google Scholar 

  • Kloc M, Dougherty MT, Bilinski S, Chan AP, Brey E, King ML, Patrick CW, Etkin LD (2002) Three-dimensional ultrastructural analysis of RNA distribution within germinal granules of xenopus. Dev Biol 241:79–93

    Article  PubMed  CAS  Google Scholar 

  • Kotaja N, Bhattacharyya SN, Jaskiewicz L, Kimmins S, Parvinen M, Filipowicz W, Sassone-Corsi P (2006) The chromatoid body of male germ cells: similarity with processing bodies and presence of Dicer and microRNA pathway components. Proc Natl Acad Sci U S A 103:2647–2652

    Article  PubMed  CAS  Google Scholar 

  • Kozak SL, Marin M, Rose KM, Bystrom C, Kabat D (2006) The anti-HIV-1 editing enzyme APOBEC3G binds HIV-1 RNA and messenger RNAs that shuttle between polysomes and stress granules. J Biol Chem 281:29105–29119

    Article  PubMed  CAS  Google Scholar 

  • Krichevsky AM, Kosik KS (2001) Neuronal RNA granules: a link between RNA localization and stimulation-dependent translation. Neuron 32:683–696

    Article  PubMed  CAS  Google Scholar 

  • Kuwana M, Kimura K, Hirakata M, Kawakami Y, Ikeda Y (2002) Differences in autoantibody response to Th/To between systemic sclerosis and other autoimmune diseases. Ann Rheum Dis 61:842–846

    Article  PubMed  CAS  Google Scholar 

  • Laurino CFC, Fritzler MJ, Mortara RA, Silva NP, Almeida IC, Andrade LEC (2006) Human autoantibodies to diacyl-phosphatidylethanolamine recognize a specific set of discrete cytoplasmic domains. Clin Exp Immunol 143:572–584

    Article  PubMed  CAS  Google Scholar 

  • Lazzaretti D, Tournier I, Izaurralde E (2009) The C-terminal domains of human TNRC6A, TNRC6B, and TNRC6C silence bound transcripts independently of Argonaute proteins. RNA 15:1059–1066

    Article  PubMed  CAS  Google Scholar 

  • Leatherman JL, Jongens TA (2003) Transcriptional silencing and translational control: key features of early germline development. Bioessays 25:326–335

    Article  PubMed  CAS  Google Scholar 

  • Lee L, Davies SE, Liu JL (2009a) The spinal muscular atrophy protein SMN affects drosophila germline nuclear organization through the U-body-P-body pathway. Dev Biol 332:142–155

    Article  PubMed  CAS  Google Scholar 

  • Lee YS, Pressman S, Andress AP, Kim K, White JL, Cassidy JJ, Li X, Lubell K, Lim DH, Cho IS, Nakahara K, Preall JB, Bellare P, Sontheimer EJ, Carthew RW (2009b) Silencing by small RNAs is linked to endosomal trafficking. Nat Cell Biol 11:1150–1156

    Article  PubMed  CAS  Google Scholar 

  • Leung AK, Sharp PA (2007) microRNAs: a safeguard against turmoil? Cell 130:581–585

    Article  PubMed  CAS  Google Scholar 

  • Leung AK, Calabrese JM, Sharp PA (2006) Quantitative analysis of Argonaute protein reveals microRNA-dependent localization to stress granules. Proc Natl Acad Sci U S A 103:18125–18130

    Article  PubMed  CAS  Google Scholar 

  • Li S, Lian SL, Moser JJ, Fritzler ML, Fritzler MJ, Satoh M, Chan EKL (2008) Identification of GW182 and its novel isoform TNGW1 as translational repressors in Ago-2-mediated silencing. J Cell Sci 121:4134–4144

    Article  PubMed  CAS  Google Scholar 

  • Lian S, Jakymiw A, Eystathioy T, Hamel JC, Fritzler MJ, Chan EKL (2006) GW bodies, MicroRNAs and the cell cycle. Cell Cycle 5:242–245

    Article  PubMed  CAS  Google Scholar 

  • Lin MD, Fan SJ, Hsu WS, Chou TB (2006) Drosophila decapping protein 1, dDcp1, is a component of the oskar mRNP complex and directs its posterior localization in the oocyte. Dev Cell 10:601–613

    Article  PubMed  CAS  Google Scholar 

  • Lin MD, Jiao X, Grima D, Newbury SF, Kiledjian M, Chou TB (2008) Drosophila processing bodies in oogenesis. Dev Biol 322:276–288

    Article  PubMed  CAS  Google Scholar 

  • Liu JL, Gall JG (2007) U bodies are cytoplasmic structures that contain uridine-rich small nuclear ribonucleoproteins and associate with P bodies. Proc Natl Acad Sci U S A 104:11655–11659

    Article  PubMed  CAS  Google Scholar 

  • Liu J, Carmell MA, Rivas FV, Marsden CG, Thomson JM, Song JJ, Hammond SM, Joshua-Tor L, Hannon GJ (2004) Argonaute2 is the catalytic engine of mammalian RNAi. Science 305:1437–1441

    Article  PubMed  CAS  Google Scholar 

  • Liu J, Rivas FV, Wohlschlegel J, Yates JR III, Parker R, Hannon GJ (2005a) A role for the P-body component GW182 in microRNA function. Nat Cell Biol 7:1161–1166

    Article  CAS  Google Scholar 

  • Liu J, Valencia-Sanchez MA, Hannon GJ, Parker R (2005b) MicroRNA-dependent localization of targeted mRNAs to mammalian P-bodies. Nat Cell Biol 7:719–723

    Article  PubMed  CAS  Google Scholar 

  • Liu JL, Buszczak M, Gall JG (2006) Nuclear bodies in the Drosophila germinal vesicle. Chromosome Res 14:465–475

    Article  PubMed  CAS  Google Scholar 

  • Luft LM (2005) Thesis Dissertation: Characterization of GWBs in Breast Cancer. University of Calgary

    Google Scholar 

  • Lugli G, Larson J, Martone ME, Jones Y, Smalheiser NR (2005) Dicer and eIF2c are enriched at postsynaptic densities in adult mouse brain and are modified by neuronal activity in a calpain-dependent manner. J Neurochem 94:896–905

    Article  PubMed  CAS  Google Scholar 

  • Lugli G, Torvik VI, Larson J, Smalheiser NR (2008) Expression of microRNAs and their precursors in synaptic fractions of adult mouse forebrain. J Neurochem 106:650–661

    Article  PubMed  CAS  Google Scholar 

  • Mansfield KD, Keene JD (2009) The ribonome: a dominant force in co-ordinating gene expression. Biol Cell 101:169–181

    Article  PubMed  CAS  Google Scholar 

  • Marnef A, Sommerville J, Ladomery MR (2009) RAP55: insights into an evolutionarily conserved protein family. Int J Biochem Cell Biol 41:977–981

    Article  PubMed  CAS  Google Scholar 

  • Martin AN, Li Y (2007) RNase MRP RNA and human genetic diseases. Cell Res 17:219–226

    PubMed  CAS  Google Scholar 

  • Matranga C, Tomari Y, Shin C, Bartel DP, Zamore PD (2005) Passenger-strand cleavage facilitates assembly of siRNA into Ago2-containing RNAi enzyme complexes. Cell 123:607–620

    Article  PubMed  CAS  Google Scholar 

  • Mazroui R, Huot ME, Tremblay S, Filion C, Labelle Y, Khandjian EW (2002) Trapping of messenger RNA by Fragile X Mental Retardation protein into cytoplasmic granules induces translation repression. Hum Mol Genet 11:3007–3017

    Article  PubMed  CAS  Google Scholar 

  • McLellan A (2009) Exosome release by primary B cells. Crit Rev Immunol 29:203–217

    Article  PubMed  CAS  Google Scholar 

  • Meister G, Tuschl T (2004) Mechanisms of gene silencing by double-stranded RNA. Nature 431:343–349

    Article  PubMed  CAS  Google Scholar 

  • Meister G, Landthaler M, Peters L, Chen PY, Urlaub H, Luhrmann R, Tuschl T (2005) Identification of novel Argonaute-associated proteins. Curr Biol 15:2149–2155

    Article  PubMed  CAS  Google Scholar 

  • Mironov A Jr, Latawiec D, Wille H, Bouzamondo-Bernstein E, Legname G, Williamson RA, Burton D, DeArmond SJ, Prusiner SB, Peters PJ (2003) Cytosolic prion protein in neurons. J Neurosci 23:7183–7193

    PubMed  CAS  Google Scholar 

  • Misteli T, Caceres JF, Spector DL (1997) The dynamics of a pre-mRNA splicing factor in living cells. Nature 387:523–527

    Article  PubMed  CAS  Google Scholar 

  • Miyoshi K, Okada TN, Siomi H, Siomi MC (2009) Characterization of the miRNA-RISC loading complex and miRNA-RISC formed in the Drosophila miRNA pathway. RNA 15:1282–1291

    Article  PubMed  CAS  Google Scholar 

  • Mollet S, Cougot N, Wilczynska A, Dautry F, Kress M, Bertrand E, Weil D (2008) Translationally repressed mRNA transiently cycles through stress granules during stress. Mol Biol Cell 19:4469–4479

    Article  PubMed  CAS  Google Scholar 

  • Moser JJ, Fritzler MJ (2010) Cytoplasmic ribonucleoprotein (RNP) bodies and their relationship to GW/P bodies. Int J Biochem Cell Biol 42:828–843

    Article  PubMed  CAS  Google Scholar 

  • Moser JJ, Eystathioy T, Chan EKL, Fritzler MJ (2007) Markers of mRNA stabilization and degradation, and RNAi within astrocytoma GW bodies. J Neurosci Res 85:3619–3631

    Article  PubMed  CAS  Google Scholar 

  • Moser JJ, Chan EKL, Fritzler MJ (2009) Optimization of immunoprecipitation-western blot analysis in detecting GW182-associated components of GW/P bodies. Nat Protoc 4:674–685

    Article  PubMed  CAS  Google Scholar 

  • Moser JJ, Fritzler MJ, Rattner JB (2011) Repression of GW/P body components and the RNAi microprocessor impacts primary ciliogenesis in human astrocytes. BMC Cell Biol 12:37

    Article  PubMed  CAS  Google Scholar 

  • Moussa F, Oko R, Hermo L (1994) The immunolocalization of small nuclear ribonucleoprotein particles in testicular cells during the cycle of the seminiferous epithelium of the adult rat. Cell Tissue Res 278:363–378

    Article  PubMed  CAS  Google Scholar 

  • Musunuru K, Darnell RB (2001) Paraneoplastic neurologic disease antigens: RNA-binding proteins and signaling proteins in neuronal degeneration. Annu Rev Neurosci 24:239–262

    Article  PubMed  CAS  Google Scholar 

  • Nagamori I, Sassone-Corsi P (2008) The chromatoid body of male germ cells: epigenetic control and miRNA pathway. Cell Cycle 7:3503–3508

    Article  PubMed  CAS  Google Scholar 

  • Nakamura A, Amikura R, Hanyu K, Kobayashi S (2001) Me31B silences translation of oocyte-localizing RNAs through the formation of cytoplasmic RNP complex during Drosophila oogenesis. Development 128:3233–3242

    PubMed  CAS  Google Scholar 

  • Narayanan U, Achsel T, Luhrmann R, Matera AG (2004) Coupled in vitro import of U snRNPs and SMN, the spinal muscular atrophy protein. Mol Cell 16:223–234

    Article  PubMed  CAS  Google Scholar 

  • Nissan T, Parker R (2008) Analyzing P-bodies in Saccharomyces cerevisiae. Methods Enzymol 448:507–520

    Article  PubMed  CAS  Google Scholar 

  • Pare JM, Tahbaz N, Lopez-Orozco J, Lapointe P, Lasko P, Hobman TC (2009) Hsp90 regulates the function of Argonaute 2 and its recruitment to stress granules and P-bodies. Mol Biol Cell 20:3273–3284

    Article  PubMed  CAS  Google Scholar 

  • Parker R, Sheth U (2007) P bodies and the control of mRNA translation and degradation. Mol Cell 25:635–646

    Article  PubMed  CAS  Google Scholar 

  • Parvinen M (2005) The chromatoid body in spermatogenesis. Int J Androl 28:189–201

    Article  PubMed  Google Scholar 

  • Pauley KM, Eystathioy T, Jakymiw A, Hamel JC, Fritzler MJ, Chan EKL (2006) Formation of GW bodies is a consequence of microRNA genesis. EMBO Rep 7:904–910

    Article  PubMed  CAS  Google Scholar 

  • Perl A (2009) Emerging new pathways of pathogenesis and targets for treatment in systemic lupus erythematosus and Sjogren’s syndrome. Curr Opin Rheumatol 21:443–447

    Article  PubMed  CAS  Google Scholar 

  • Pillai RS, Bhattacharyya SN, Artus CG, Zoller T, Cougot N, Basyuk E, Bertrand E, Filipowicz W (2005) Inhibition of translational initiation by Let-7 microRNA in human cells. Science 309:1573–1576

    Article  PubMed  CAS  Google Scholar 

  • Prusiner SB (1998) Prions. Proc Natl Acad Sci U S A 95:13363–13383

    Article  PubMed  CAS  Google Scholar 

  • Quaresma AJ, Bressan GC, Gava LM, Lanza DC, Ramos CH, Kobarg J (2009) Human HnRNP Q re-localizes to cytoplasmic granules upon PMA, thapsigargin, Arsenite and heat-shock treatments. Exp Cell Res 315:968–980

    Article  PubMed  CAS  Google Scholar 

  • Rabinowits G, Gercel-Taylor C, Day JM, Taylor DD, Kloecker GH (2009) Exosomal microRNA: a diagnostic marker for lung cancer. Clin Lung Cancer 10:42–46

    Article  PubMed  CAS  Google Scholar 

  • Rana TM (2007) Illuminating the silence: understanding the structure and function of small RNAs. Nat Rev Mol Cell Biol 8:23–36

    Article  PubMed  CAS  Google Scholar 

  • Rehwinkel J, Behm-Ansmant I, Gatfield D, Izaurralde E (2005) A crucial role for GW182 and the DCP1:DCP2 decapping complex in miRNA-mediated gene silencing. RNA 11:1640–1647

    Article  PubMed  CAS  Google Scholar 

  • Rosen A, Casciola-Rosen L (2009) Autoantigens in systemic autoimmunity: critical partner in pathogenesis. J Intern Med 265:625–631

    Article  PubMed  CAS  Google Scholar 

  • Roucou X (2009) Prion protein and RNA: a view from the cytoplasm. Front Biosci 14:5157–5164

    Article  PubMed  CAS  Google Scholar 

  • Scheller N, Resa-Infante P, de la Luna S, Galao RP, Albrecht M, Kaestner L, Lipp P, Lengauer T, Meyerhans A, Diez J (2007) Identification of PatL1, a human homolog to yeast P body component Pat1. Biochim Biophys Acta 1773:1786–1792

    Article  PubMed  CAS  Google Scholar 

  • Schisa JA, Pitt JN, Priess JR (2001) Analysis of RNA associated with P granules in germ cells of C. elegans adults. Development 128:1287–1298

    PubMed  CAS  Google Scholar 

  • Schneider MD, Najand N, Chaker S, Pare JM, Haskins J, Hughes SC, Hobman TC, Locke J, Simmonds AJ (2006) Gawky is a component of cytoplasmic mRNA processing bodies required for early Drosophila development. J Cell Biol 174:349–358

    Article  PubMed  CAS  Google Scholar 

  • Schratt GM, Tuebing F, Nigh EA, Kane CG, Sabatini ME, Kiebler M, Greenberg ME (2006) A brain-specific microRNA regulates dendritic spine development. Nature 439:283–289

    Article  PubMed  CAS  Google Scholar 

  • Schumperli D, Pillai RS (2004) The special Sm core structure of the U7 snRNP: far-reaching significance of a small nuclear ribonucleoprotein. Cell Mol Life Sci 61:2560–2570

    Article  PubMed  CAS  Google Scholar 

  • Sen GL, Blau HM (2005) Argonaute 2/RISC resides in sites of mammalian mRNA decay known as cytoplasmic bodies. Nat Cell Biol 7:633–636

    Article  PubMed  CAS  Google Scholar 

  • Serman A, LeRoy F, Aigueperse C, Kress M, Dautry F, Weil D (2007) GW body disassembly triggered by siRNAs independently of their silencing activity. Nucleic Acids Res 35:4715–4727

    Article  PubMed  CAS  Google Scholar 

  • Sheth U, Parker R (2003) Decapping and decay of messenger RNA occur in cytoplasmic processing bodies. Science 300:805–808

    Article  PubMed  CAS  Google Scholar 

  • Sheth U, Parker R (2006) Targeting of aberrant mRNAs to cytoplasmic processing bodies. Cell 125:1095–1109

    Article  PubMed  CAS  Google Scholar 

  • Simpson RJ, Lim JW, Moritz RL, Mathivanan S (2009) Exosomes: proteomic insights and diagnostic potential. Expert Rev Proteomics 6:267–283

    Article  PubMed  CAS  Google Scholar 

  • Snee MJ, Macdonald PM (2009) Dynamic organization and plasticity of sponge bodies. Dev Dyn 238:918–930

    Article  PubMed  CAS  Google Scholar 

  • Sossin WS, DesGroseillers L (2006) Intracellular trafficking of RNA in neurons. Traffic 7:1581–1589

    Article  PubMed  CAS  Google Scholar 

  • Souquere S, Mollet S, Kress M, Dautry F, Pierron G, Weil D (2009) Unravelling the ultrastructure of stress granules and associated P-bodies in human cells. J Cell Sci 122:3619–3626

    Article  PubMed  CAS  Google Scholar 

  • St Johnston D (2005) Moving messages: the intracellular localization of mRNAs. Nat Rev Mol Cell Biol 6:363–375

    Article  PubMed  CAS  Google Scholar 

  • St JD, Driever W, Berleth T, Richstein S, Nusslein-Volhard C (1989) Multiple steps in the localization of bicoid RNA to the anterior pole of the Drosophila oocyte. Development 107(Suppl):13–19

    Google Scholar 

  • Stinton LM, Eystathioy T, Selak S, Chan EKL, Fritzler MJ (2004) Autoantibodies to protein transport and messenger RNA processing pathways: endosomes, lysosomes, Golgi complex, proteasomes, assemblyosomes, exosomes and GW Bodies. Clin Immunol 110:30–44

    Article  PubMed  CAS  Google Scholar 

  • Strom A, Wang GS, Reimer R, Finegood DT, Scott FW (2007) Pronounced cytosolic aggregation of cellular prion protein in pancreatic beta-cells in response to hyperglycemia. Lab Invest 87:139–149

    Article  PubMed  CAS  Google Scholar 

  • Sutton MA, Schuman EM (2006) Dendritic protein synthesis, synaptic plasticity, and memory. Cell 127:49–58

    Article  PubMed  CAS  Google Scholar 

  • Tan EM (1991) Autoantibodies in pathology and cell biology. Cell 67:841–842

    Article  PubMed  CAS  Google Scholar 

  • Tarn WY, Steitz JA (1997) Pre-mRNA splicing: the discovery of a new spliceosome doubles the challenge. Trends Biochem Sci 22:132–137

    Article  PubMed  CAS  Google Scholar 

  • Teixeira D, Sheth U, Valencia-Sanchez MA, Brengues M, Parker R (2005) Processing bodies require RNA for assembly and contain nontranslating mRNAs. RNA 11:371–382

    Article  PubMed  CAS  Google Scholar 

  • Thomas MG, Tosar LJM, Loschi M, Pasquini JM, Correale J, Kindler S, Boccaccio GL (2005) Staufen recruitment into stress granules does not affect early mRNA transport in oligodendrocytes. Mol Biol Cell 16:405–420

    Article  PubMed  CAS  Google Scholar 

  • Tourriere H, Gallouzi IE, Chebli K, Capony JP, Mouaikel J, Van der Geer P, Tazi J (2001) RasGAP-associated endoribonuclease G3Bp: selective RNA degradation and phosphorylation-dependent localization. Mol Cell Biol 21:7747–7760

    Article  PubMed  CAS  Google Scholar 

  • Tourrière H, Chebli K, Zekri L, Courselaud B, Blanchard JM, Bertrand E, Tazi J (2003) The RasGAP-associated endoribonuclease G3BP assembles stress granules. J Cell Biol 160:823–831

    Article  PubMed  CAS  Google Scholar 

  • Toyooka Y, Tsunekawa N, Takahashi Y, Matsui Y, Satoh M, Noce T (2000) Expression and intracellular localization of mouse Vasa-homologue protein during germ cell development. Mech Dev 93:139–149

    Article  PubMed  CAS  Google Scholar 

  • Tsai-Morris CH, Sheng Y, Lee E, Lei KJ, Dufau ML (2004) Gonadotropin-regulated testicular RNA helicase (GRTH/Ddx25) is essential for spermatid development and completion of spermatogenesis. Proc Natl Acad Sci U S A 101:6373–6378

    Article  PubMed  CAS  Google Scholar 

  • van Dijk E, Cougot N, Meyer S, Babajko S, Wahle E, Séraphin B (2002) Human Dcp2: a catalytically active mRNA decapping enzyme located in specific cytoplasmic structures. EMBO J 21:6915–6924

    Article  PubMed  Google Scholar 

  • van Eenennaam H, Vogelzangs JHP, Lugtenberg D, van den Hoogen FHJ, Van Venrooij WJ, Pruijn GJM (2002) Identity of the RNase MRP- and RNase P-associated Th/To autoantigen. Arthritis Rheum 46:3266–3272

    Article  PubMed  CAS  Google Scholar 

  • Vey M, Pilkuhn S, Wille H, Nixon R, DeArmond SJ, Smart EJ, Anderson RG, Taraboulos A, Prusiner SB (1996) Subcellular colocalization of the cellular and scrapie prion proteins in caveolae-like membranous domains. Proc Natl Acad Sci U S A 93:14945–14949

    Article  PubMed  CAS  Google Scholar 

  • Werner G, Werner K (1995) Immunocytochemical localization of histone H4 in the chromatoid body of rat spermatids. J Submicrosc Cytol Pathol 27:325–330

    PubMed  CAS  Google Scholar 

  • Wilczynska A, Aigueperse C, Kress M, Dautry F, Weil D (2005) The translational regulator CPEB1 provides a link between dcp1 bodies and stress granules. J Cell Sci 118:981–992

    Article  PubMed  CAS  Google Scholar 

  • Wilhelm JE, Mansfield J, Hom-Booher N, Wang S, Turck CW, Hazelrigg T, Vale RD (2000) Isolation of a ribonucleoprotein complex involved in mRNA localization in Drosophila oocytes. J Cell Biol 148:427–440

    Article  PubMed  CAS  Google Scholar 

  • Will CL, Luhrmann R (2001) Spliceosomal UsnRNP biogenesis, structure and function. Curr Opin Cell Biol 13:290–301

    Article  PubMed  CAS  Google Scholar 

  • Wilsch-Brauninger M, Schwarz H, Nusslein-Volhard C (1997) A sponge-like structure involved in the association and transport of maternal products during Drosophila oogenesis. J Cell Biol 139:817–829

    Article  PubMed  CAS  Google Scholar 

  • Yamane K, Ihn H, Kubo M, Kuwana M, Asano Y, Yazawa N, Tamaki K (2001) Antibodies to Th/To ribonucleoprotein in patients with localized scleroderma. Rheumatology 40:683–686

    Article  PubMed  CAS  Google Scholar 

  • Yamochi T, Ohnuma K, Hosono O, Tanaka H, Kanai Y, Morimoto C (2008) SSA/Ro52 autoantigen interacts with Dcp2 to enhance its decapping activity. Biochem Biophys Res Commun 370:195–199

    Article  PubMed  CAS  Google Scholar 

  • Yang Z, Jakymiw A, Wood MR, Eystathioy T, Rubin RL, Fritzler MJ, Chan EKL (2004) GW182 is critical for the stability of GW bodies expressed during the cell cycle and cell proliferation. J Cell Sci 117:5567–5578

    Article  PubMed  CAS  Google Scholar 

  • Yang WH, Yu JH, Gulick T, Bloch KD, Bloch DB (2006) RNA-associated protein 55 (RAP55) localizes to mRNA processing bodies and stress granules. RNA 12:547–554

    Article  PubMed  CAS  Google Scholar 

  • Yu JH, Yang WH, Gulick T, Bloch KD, Bloch DB (2005) Ge-1 is a central component of the mammalian cytoplasmic mRNA processing body. RNA 11:1795–1802

    Article  PubMed  CAS  Google Scholar 

  • Zee JM, Shideler KK, Eystathioy T, Bruecks AK, Fritzler MJ, Mydlarski PR (2008) GW bodies: cytoplasmic compartments in normal human skin. J Invest Dermatol 128:2902–2912

    Article  CAS  Google Scholar 

  • Zeitelhofer M, Karra D, Macchi P, Tolino M, Thomas S, Schwarz M, Kiebler M, Dahm R (2008) Dynamic interaction between P-bodies and transport ribonucleoprotein particles in dendrites of mature hippocampal neurons. J Neurosci 28:7555–7562

    Article  PubMed  CAS  Google Scholar 

  • Zeng Y, Sankala H, Zhang X, Graves PR (2008) Phosphorylation of Argonaute 2 at serine-387 facilitates its localization to processing bodies. Biochem J 413:429–436

    Article  PubMed  CAS  Google Scholar 

  • Zhang L, Ding L, Cheung TH, Dong MQ, Chen J, Sewell AK, Liu X, Yates JR III, Han M (2007) Systematic identification of C. elegans miRISC proteins, miRNAs, and mRNA targets by their interactions with GW182 proteins AIN-1 and AIN-2. Mol Cell 28:598–613

    Article  PubMed  CAS  Google Scholar 

  • Zipprich JT, Bhattacharyya S, Mathys H, Filipowicz W (2009) Importance of the C-terminal domain of the human GW182 protein TNRC6C for translational repression. RNA 20:781–793

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marvin J. Fritzler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Moser, J.J., Fritzler, M.J. (2013). Relationship of Other Cytoplasmic Ribonucleoprotein Bodies (cRNPB) to GW/P Bodies. In: Chan, E., Fritzler, M. (eds) Ten Years of Progress in GW/P Body Research. Advances in Experimental Medicine and Biology, vol 768. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5107-5_13

Download citation

Publish with us

Policies and ethics