Skip to main content

Optical Coherence Tomography for Brain Imaging

  • Chapter
  • First Online:
Optical Methods and Instrumentation in Brain Imaging and Therapy

Part of the book series: Bioanalysis ((BIOANALYSIS,volume 3))

Abstract

Recently, there has been growing interest in using OCT for brain imaging. A feasibility study of OCT for guiding deep brain probes has found that OCT can differentiate the white matter and gray matter because the white matter tends to have a higher peak reflectivity and steeper attenuation rate compared to gray matter. In vivo 3D visualization of the layered organization of a rat olfactory bulb with OCT has been demonstrated. OCT has been used for single myelin fiber imaging in living rodents without labeling. The refractive index in the rat somatosensory cortex has also been measured with OCT. In addition, functional extension of OCT, such as Doppler-OCT (D-OCT), polarization sensitive-OCT (PS-OCT), and phase-resolved-OCT (PR-OCT), can image and quantify physiological parameters in addition to the morphological structure image. Based on the scattering changes during neural activity, OCT has been used to measure the functional activation in neuronal tissues. PS-OCT, which combines polarization sensitive detection with OCT to determine tissue birefringence, has been used for the localization of nerve fiber bundles and the mapping of micrometer-scale fiber pathways in the brain. D-OCT, also named optical Doppler tomography (ODT), combines the Doppler principle with OCT to obtain high resolution tomographic images of moving constituents in highly scattering biological tissues. D-OCT has been successfully used to image cortical blood flow and map the blood vessel network for brain research. In this chapter, the principle and technology of OCT and D-OCT are reviewed and examples of potential applications are described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Huang D, Swanson EA, Lin CP, Schuman JS, Stinson WG, Chang W, Hee MR, Flotte T, Gregory K, Puliafito CA, Fujimoto JG (1991) Optical coherence tomography. Science 254:1178–1181

    Article  ADS  Google Scholar 

  2. Drexler W, Fujimoto JG (2008) Optical coherence tomography: technology and applications. Springer, Berlin

    Book  Google Scholar 

  3. Jeon SW, Shure MA, Baker KB, Huang D, Rollins AM, Chahlavi A, Rezai AR (2006) A feasibility study of optical coherence tomography for guiding deep brain probes. J Neurosci Methods 154:96–101

    Article  Google Scholar 

  4. Watanabe H, Rajagopalan UM, Nakamichi Y, Igarashi KM, Madjarova VD, Kadono H, Tanifuji M (2011) In vivo layer visualization of rat olfactory bulb by a swept source optical coherence tomography and its confirmation through electrocoagulation and anatomy. Biomed Opt Express 2:2279–2287

    Article  Google Scholar 

  5. Arous JB, Binding J, Léger J-F, Casado M, Topilko P, Gigan S, Boccara AC, Bourdieu L (2011) Single myelin fiber imaging in living rodents without labeling by deep optical coherence microscopy. J Biomed Opt 16:116012

    Article  Google Scholar 

  6. Binding J, Arous JB, Léger J-F, Gigan S, Boccara C, Bourdieu L (2011) Brain refractive index measured in vivo with high-NA defocus-corrected full-field OCT and consequences for two-photon microscopy. Opt Express 19:4833

    Article  ADS  Google Scholar 

  7. Maheswari RU, Takaoka H, Kadono H, Homma R, Tanifuji M (2003) Novel functional imaging technique from brain surface with optical coherence tomography enabling visualization of depth resolved functional structure in vivo. J Neurosci Methods 124:83–92

    Article  Google Scholar 

  8. Rajagopalan UM, Tanifuji M (2007) Functional optical coherence tomography reveals localized layer-specific activations in cat primary visual cortex in vivo. Opt Lett 32:2614–2616

    Article  ADS  Google Scholar 

  9. Aguirre AD, Chen Y, Fujimoto JG, Ruvinskaya L, Devor A, Boas DA (2006) Depth-resolved imaging of functional activation in the rat cerebral cortex using optical coherence tomography. Opt Lett 31:3459–3461

    Article  ADS  Google Scholar 

  10. Chen Y, Aguirre AD, Ruvinskaya L, Devor A, Boas DA, Fujimoto JG (2009) Optical coherence tomography (OCT) reveals depth-resolved dynamics during functional brain activation. J Neurosci Methods 178:162–173

    Article  Google Scholar 

  11. Lazebnik M, Marks DL, Potgieter K, Gillette R, Boppart SA (2003) Functional optical coherence tomography for detecting neural activity through scattering changes. Opt Lett 28:1218–1220

    Article  ADS  Google Scholar 

  12. Maheswari RU, Takaoka H, Homma R, Kadono H, Tanifuji M (2002) Implementation of optical coherence tomography (OCT) in visualization of functional structures of cat visual cortex. Opt Commun 202:47–54

    Article  ADS  Google Scholar 

  13. de Boer JF, Srinivas SM, Park BH, Pham TH, Chen Z, Milner TE, Nelson JS (1999) Polarization effects in optical coherence tomography of various biological tissues. IEEE J Sel Top Quant Electron 5:1200–1204

    Article  Google Scholar 

  14. Nakaji H, Kouyama N, Muragaki Y, Kawakami Y, Iseki H (2008) Localization of nerve fiber bundles by polarization-sensitive optical coherence tomography. J Neurosci Methods 174:82–90

    Article  Google Scholar 

  15. Wang H, Black AJ, Zhu JF, Stigen TW, Al-Qaisi MK, Netoff TI, Abosch A, Akkin T (2011) Reconstructing micrometer-scale fiber pathways in the brain: multi-contrast optical coherence tomography based tractography. Neuroimage 58:984–992

    Article  Google Scholar 

  16. Chen Z, Milner TE, Dave D, Nelson JS (1997) Optical Doppler tomographic imaging of fluid flow velocity in highly scattering media. Opt Lett 22:64–66

    Article  ADS  Google Scholar 

  17. Chen Z, Milner TE, Srinivas S, Xiaojun W, Malekafzali A, van Gemert MJC, Nelson JS (1997) Noninvasive imaging of in vivo blood flow velocity using optical Doppler tomography. Opt Lett 22:1119–1121

    Article  ADS  Google Scholar 

  18. Izatt JA, Kulkarni MD, Yazdanfar S, Barton JK, Welch AJ (1997) In vivo bidirectional color Doppler flow imaging of picoliter blood volumes using optical coherence tomography. Opt Lett 22:1439–1441

    Article  ADS  Google Scholar 

  19. Zhao Y, Chen Z, Saxer C, Shaohua X, de Boer JF, Nelson JS (2000) Phase-resolved optical coherence tomography and optical Doppler tomography for imaging blood flow in human skin with fast scanning speed and high velocity sensitivity. Opt Lett 25:114–116

    Article  ADS  Google Scholar 

  20. Chen Z, Zhao Z, Srinivas SM, Nelson JS, Prakash N, Frostig RD (1999) Optical Doppler tomography. IEEE J Sel Top Quant Electron 5:1134–1142

    Article  Google Scholar 

  21. Wang RK, Hurst S (2007) Mapping of cerebro-vascular blood perfusion in mice with skin and skull intact by Optical Micro-AngioGraphy at 1.3 μm wavelength. Opt Express 15:11402–11412

    Article  ADS  Google Scholar 

  22. Jia Y, An L, Wang RK (2010) Label-free and highly sensitive optical imaging of detailed microcirculation within meninges and cortex in mice with the cranium left intact. J Biomed Opt 15:030510

    Article  Google Scholar 

  23. Yu L, Nguyen E, Liu G, Choi B, Chen Z (2010) Spectral Doppler optical coherence tomography imaging of localized ischemic stroke in a mouse model. J Biomed Opt 15:066006

    Article  Google Scholar 

  24. Srinivasan VJ, Sakadžić S, Gorczynska I, Ruvinskaya S, WuW FJG, Boas DA (2009) Depth-resolved microscopy of cortical hemodynamics with optical coherence tomography. Opt Lett 34:3086–3088

    Article  Google Scholar 

  25. Srinivasan VJ, Sakadzic S, Gorczynska I, Ruvinskaya S, WuW FJG, Boas DA (2010) Quantitative cerebral blood flow with optical coherence tomography. Opt Express 18:2477–2494

    Article  Google Scholar 

  26. Fercher AF, Kitzenberger CK, Kamp G, El-Zaiat SY (1995) Measurement of intraocular distances by backscattering spectral interferometry. Opt Commun 117:43–48

    Article  ADS  Google Scholar 

  27. Wojtkowski M, Leitgeb R, Kowalczyk A, Bajraszewski T, Fercher AF (2002) In vivo human retinal imaging by Fourier domain optical coherence tomography. J Biomed Opt 7:457–463

    Article  Google Scholar 

  28. Chinn SR, Swanson EA, Fujimoto JG (1997) Optical coherence tomography using a frequency-tunable optical source. Opt Lett 22:340–342

    Article  ADS  Google Scholar 

  29. Golubovic B, Bouma BE, Tearney GJ, Fujimoto JG (1997) Optical frequency-domain reflectometry using rapid wavelength tuning of a Cr4+:forsterite laser. Opt Lett 22:1704–1706

    Article  ADS  Google Scholar 

  30. Leitgeb R, Hitzenberger CK, Fercher AF, Kulhavy M (2003) Performance of fourier domain vs. time domain optical coherence tomography. Opt Express 11:889–894

    Article  ADS  Google Scholar 

  31. de Boer JF, Cense B, Park BH, Pierce MC, Tearney GJ, Bouma BE (2003) Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography. Opt Lett 28:2067–2069

    Article  ADS  Google Scholar 

  32. Choma MA, Sarunic MV, Yang C, Izatt JA (2003) Sensitvity advantage of swept source and Fourier domain optical coherence tomography. Opt Express 11:2183–2189

    Article  ADS  Google Scholar 

  33. Zhao Y, Chen Z, Saxer C, Shen Q, Xiang S, de Boer JF, Nelson JS (2000) Doppler standard deviation imaging for clinical monitoring of in vivo human skin blood flow. Opt Lett 25:1358–1360

    Article  ADS  Google Scholar 

  34. Zhao Y, Chen Z, Ding Z, Ren H, Nelson JS (2001) Three-dimensional reconstruction of in vivo blood vessels in human skin using phase-resolved optical Doppler tomography. IEEE J Sel Top Quant Electron 7:931–935

    Article  Google Scholar 

  35. Leitgeb RA, Schmetterer L, DrexlerW FAF, Zawadzki RJ, Bajraszewski T (2003) Real-time assessment of retinal blood flow with ultrafast acquisition by color Doppler Fourier domain optical coherence tomography. Opt Express 11:3116–3121

    Article  ADS  Google Scholar 

  36. Wang L, Wang Y, Bachaman M, Li GP, Chen Z (2004) Frequency domain Phase-resolved optical Doppler and Doppler variance tomography. Opt Commun 242:345–347

    Article  ADS  Google Scholar 

  37. Zhang J, Chen Z (2005) In vivo blood flow imaging by a swept laser source based Fourier domain optical Doppler tomography. Opt Express 13:7449–7457

    Article  ADS  Google Scholar 

  38. Yang VX, Gordon ML, Mok A, Zhao Y, Chen Z, Cobbold RSC, Wilson BC, Vitkin IA (2002) Improved phase-resolved optical Doppler tomography using the Kasai velocity estimator and histogram segmentation. Opt Commun 208:209–214

    Article  ADS  Google Scholar 

  39. Ichimiya A (1998) Functional and structural brain imagings in dementia. Psychiatry Clin Neurosci 52:S223–S225

    Google Scholar 

  40. Laule C, Vavasour IM, Kolind SH, Li DK, Traboulsee TL, Moore GR, MacKay AL (2007) Magnetic resonance imaging of myelin. Neurotherapeutics 4:460–484

    Article  Google Scholar 

  41. Stankoff B, Wang Y, Bottlaender M, Aigrot MS, Dolle F, Wu C, Feinstein D, Huang GF, Semah F, Mathis CA, KlunkW GRM, Lubetzki C, Zalc B (2006) Imaging of CNSmyelin by positron-emissiontomography. Proc Natl Acad Sci USA 103:9304–9309

    Article  ADS  Google Scholar 

  42. Mathews MS, Su J, Heidari E, Levy EI, Linskey ME, Chen Z (2011) Neuroendovascular optical coherence tomography imaging and histological analysis. Neurosurgery 69:430–439

    Article  Google Scholar 

  43. Su J, Mathews MS, Nwagwu CI, Edris A, Nguyen NV, Nguyen BV, Heidari M, Linskey ME, Chen Z (2008) Imaging treated brain aneurysms in vivo using optical coherence tomography. Proc SPIE 6847:684732

    Article  Google Scholar 

  44. Grinvald A, Lieke E, Frostig RD, Gilbert CD, Wiesel TN (1986) Functional architecture of cortex revealed by optical imaging of intrinsic signals. Nature 324:361–364

    Article  ADS  Google Scholar 

  45. Frostig RD, Lieke EE, Ts’o DY, Grinvald A (1990) Cortical functional architechture and local coupling between neuronal activityand the microcirculation revealed by in vivo high-resolution optical imaging of intrinsic signals. Proc Natl Acad Sci USA 87:6082–6086

    Article  ADS  Google Scholar 

  46. Frostig RD, Masino SA, Kwon MC, Chen CH (1995) Using light to probe the brain: intrinsic signal optical imaging. Int J Imaging Syst Technol 6:216–224

    Article  Google Scholar 

  47. Kleinfeld D, P. P. M., Helmchen F, Denk W (1998) Fluctuations and stimulus-induced changes in blood flow observed in individual capillaries in layers 2 through 4 of rat neocortex. Proc Natl Acad Sci USA 95:15741–15746

    Google Scholar 

  48. Vakoc BJ, Lanning RM, Tyrrell JA, Padera TP, Bartlett LA, Stylianopoulos T, Munn LL, Tearney GJ, Fukumura D, Jain RK, Bouma BE (2009) Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging. Nat Med 15:1219–1223

    Article  Google Scholar 

  49. Jia Y, Grafe MR, Gruber A, Alkayed NJ, Wang RK (2010) In vivo optical imaging of revascularization after brain trauma in mice. Microvasc Res 81:73–80

    Article  Google Scholar 

  50. Rao B, Yu L, Jiang HK, Zacharias LC, Kurtz RM, Kuppermann BD, Chen Z (2008) Imaging pulsatile retinal blood flow in human eye. J Biomed Opt 5:040505

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to acknowledge Dr. Christopher Lay, Dr. Melissa Davis, and Prof. Ron Frostig for preparing the rat used in the manuscript. Dr. Chen also acknowledges grant support from the National Institutes of Health (R01EB-10090, R01EY-021529, P41EB-015890, R01HL-103764, and R01HL-105215), Air Force Office of Scientific Research (F49620-00-1-0371, FA9550-04-0101), and the Beckman Laser Institute Endowment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhongping Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Liu, G., Chen, Z. (2013). Optical Coherence Tomography for Brain Imaging. In: Madsen, S. (eds) Optical Methods and Instrumentation in Brain Imaging and Therapy. Bioanalysis, vol 3. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4978-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-4978-2_7

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-4977-5

  • Online ISBN: 978-1-4614-4978-2

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics