Skip to main content

Part of the book series: Fields Institute Communications ((FIC,volume 62))

Abstract

Recent developments in the theory of pfaffian sets are presented from a model-theoretic point of view. In particular, the current state of affairs for Van den Dries’s model-completeness conjecture is discussed in some detail. I prove the o-minimality of the pfaffian closure of an o-minimal structure, and I extend a weak model completeness result, originally proved as Theorem 5.1 in (J.-M. Lion and P. Speissegger, Duke Math J 103:215–231, 2000), to certain reducts of the pfaffian closure, such as the reduct generated by a single pfaffian chain.

Mathematics Subject Classification (2010): Primary 14P15, 58A17, Secondary 03C64

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J. Bochnak, M. Coste, M.-F. Roy, Real Algebraic Geometry. Ergebnisse der Mathematik und ihrer Grenzgebiete (3) (Results in Mathematics and Related Areas (3)), vol. 36 (Springer, Berlin, 1998). Translated from the 1987 French original, Revised by the authors

    Google Scholar 

  2. C. Camacho, A. Lins Neto, Geometric Theory of Foliations (Birkhäuser Boston Inc., Boston, 1985). Translated from the Portuguese by Sue E. Goodman

    Google Scholar 

  3. A. Gabrielov, Complements of subanalytic sets and existential formulas for analytic functions. Invent. Math. 125, 1–12 (1996)

    Google Scholar 

  4. A. Gabrielov, Relative Closure and the Complexity of Pfaffian Elimination, in Discrete and computational geometry. Algorithms Combin, vol. 25 (Springer, Berlin, 2003), 441–460

    Google Scholar 

  5. A. Haefliger, Structures feuilletées et cohomologie à valeur dans un faisceau de groupoïdes. Comment. Math. Helv. 32, 248–329 (1958)

    Google Scholar 

  6. G.O. Jones, Zero sets of smooth functions in the Pfaffian closure of an o-minimal structure. Proc. Am. Math. Soc. 136, 4019–4025 (2008)

    Google Scholar 

  7. M. Karpinski, A. Macintyre, Polynomial bounds for VC dimension of sigmoidal and general Pfaffian neural networks. J. Comput. Syst. Sci. 54, 169–176 (1997). 1st Annual Dagstuhl Seminar on Neural Computing (1994)

    Google Scholar 

  8. A.G. Khovanskiĭ, Real analytic manifolds with the property of finiteness, and complex abelian integrals. Funktsional. Anal. i Prilozhen. 18, 40–50 (1984)

    Google Scholar 

  9. A.G. Khovanskiĭ, Fewnomials. Translations of Mathematical Monographs, vol. 88 (American Mathematical Society, Providence, 1991). Translated from the Russian by Smilka Zdravkovska

    Google Scholar 

  10. K. Kuratowski, Topology, vol. I, new edition, revised and augmented (Academic, New York, 1966). Translated from the French by J. Jaworowski

    Google Scholar 

  11. K. Kuratowski, Topology, vol. II, new edition, revised and augmented. (Academic, New York, 1968). Translated from the French by A. Kirkor

    Google Scholar 

  12. J.-M. Lion, Inégalité de Lojasiewicz en géométrie pfaffienne. Ill. J. Math. 44, 889–900 (2000)

    Google Scholar 

  13. J.-M. Lion, Algebraic measure, foliations and o-minimal structures, in o-minimal Structures, Proceedings of the RAAG Summer School Lisbon 2003, ed. by M.J. Edmundo, D. Richardson, J. Wilkie (Cuvillier Verlag, Göttingen, Germany, 2005), pp. 159–171

    Google Scholar 

  14. J.-M. Lion, J.-P. Rolin, Volumes, feuilles de Rolle de feuilletages analytiques et théorème de Wilkie. Ann. Fac. Sci. Toulouse Math. 7(6), 93–112 (1998)

    Google Scholar 

  15. J.-M. Lion, P. Speissegger, Analytic stratification in the Pfaffian closure of an o-minimal structure. Duke Math. J. 103, 215–231 (2000)

    Google Scholar 

  16. J.-M. Lion, P. Speissegger, A geometric proof of the definability of Hausdorff limits. Selecta Math. (N.S.) 10, 377–390 (2004)

    Google Scholar 

  17. J.-M. Lion, P. Speissegger, Un théorème de type Haefliger définissable. Astérisque 323, 197–221 (2009)

    Google Scholar 

  18. J.-M. Lion, P. Speissegger, The theorem of the complement for nested sub-Pfaffian sets. Duke Math. J. 155, 35–90 (2010)

    Google Scholar 

  19. J.-M. Lion, C. Miller, P. Speissegger, Differential equations over polynomially bounded o-minimal structures. Proc. Am. Math. Soc. 131, 175–183 (2003)

    Google Scholar 

  20. C. Miller, Basics of o-minimality and Hardy Fields. Fields Institute Communications, Springer Verlag, 62, 43–69 (2012)

    Google Scholar 

  21. R. Moussu, C. Roche, Théorie de Hovanskiĭ et problème de Dulac. Invent. Math. 105, 431–441 (1991)

    Google Scholar 

  22. P. Speissegger, The Pfaffian closure of an o-minimal structure. J. Reine Angew. Math. 508, 189–211 (1999)

    Google Scholar 

  23. M. Spivak, A Comprehensive Introduction to Differential Geometry, vol. I, 2nd edn. (Publish or Perish Inc, Wilmington, 1979)

    Google Scholar 

  24. L. van den Dries, C. Miller, Geometric categories and o-minimal structures. Duke Math. J., 84, 497–540 (1996)

    Google Scholar 

  25. A.J. Wilkie, Model completeness results for expansions of the ordered field of real numbers by restricted Pfaffian functions and the exponential function. J. Am. Math. Soc. 9, 1051–1094 (1996)

    Google Scholar 

  26. A.J. Wilkie, A theorem of the complement and some new o-minimal structures. Sel. Math. (N.S.) 5, 397–421 (1999)

    Google Scholar 

Download references

Acknowledgements

Supported by the Fields Institute for Research in the Mathematical Sciences and by NSERC of Canada grant RGPIN 261961.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick Speissegger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this chapter

Cite this chapter

Speissegger, P. (2012). Pfaffian Sets and O-minimality. In: Miller, C., Rolin, JP., Speissegger, P. (eds) Lecture Notes on O-Minimal Structures and Real Analytic Geometry. Fields Institute Communications, vol 62. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4042-0_5

Download citation

Publish with us

Policies and ethics