Skip to main content

Individual Plasmonic Nanostructures as Label Free Biosensors

  • Chapter
  • First Online:
Nanoplasmonic Sensors

Part of the book series: Integrated Analytical Systems ((ANASYS))

  • 2074 Accesses

Abstract

This chapter reviews our work and that of other groups in the use of individual plasmonic nanostructures that are presented by a substrate for the label-free detection of biomolecular binding events. This class of single particle nanosensors is based on the local surface plasmon resonance (LSPR) behavior of noble metal nanostructures that enables optical transduction of binding events at their surface into an optical signal [1–5]. The LSPR peak location and intensity are sensitive to the local refractive index surrounding the nanoparticle, which is altered by the binding of biomolecular targets to receptor-functionalized nanostructures, and forms the basis of their utility as label-free biosensors [6].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yguerabide J, Yguerabide EE. Light-scattering submicroscopic particles as highly fluorescent analogs and their use as tracer labels in clinical and biological applications—II. Experimental characterization. Anal Biochem. 1998;262:157–76.

    Article  CAS  Google Scholar 

  2. Alivisatos P. The use of nanocrystals in biological detection. Nat Biotechnol. 2004;22:47–52.

    Article  CAS  Google Scholar 

  3. Penn SG, He L, Natan MJ. Nanoparticles for bioanalysis. Curr Opin Chem Biol. 2003;7:609–15.

    Article  CAS  Google Scholar 

  4. Iqbal SS, Mayo MW, Bruno JG, Bronk BV, Batt CA, Chambers JP. A review of molecular recognition technologies for detection of biological threat agents. Biosens Bioelectron. 2000;15:549–78.

    Article  CAS  Google Scholar 

  5. Storhoff JJ, Elghanian R, Mucic RC, Mirkin CA, Letsinger RL. One-pot colorimetric differentiation of polynucleotides with single base imperfections using gold nanoparticle probes. J Am Chem Soc. 1998;120:1959–64.

    Article  CAS  Google Scholar 

  6. Englebienne P. Use of colloidal gold surface plasmon resonance peak shift to infer affinity constants from the interactions between protein antigens and antibodies specific for single or multiple epitopes. Analyst. 1998;123:1599–603.

    Article  CAS  Google Scholar 

  7. Nath N, Chilkoti A. Label free colorimetric biosensing using nanoparticles. J Fluoresc. 2004;14:377–89.

    Article  CAS  Google Scholar 

  8. Nath N, Chilkoti A. A colorimetric gold nanoparticle sensor to interrogate biomolecular interactions in real time on a surface. Anal Chem. 2002;74:504–9.

    Article  CAS  Google Scholar 

  9. Haes AJ, Stuart DA, Nie SM, Van Duyne RP. Using solution-phase nanoparticles, surface-confined nanoparticle arrays and single nanoparticles as biological sensing platforms. J Fluoresc. 2004;14:355–67.

    Article  CAS  Google Scholar 

  10. Frederix F, Friedt JM, Choi KH, Laureyn W, Campitelli A, Mondelaers D, et al. Biosensing based on light absorption of nanoscaled gold and silver particles. Anal Chem. 2003;75:6894–900.

    Article  CAS  Google Scholar 

  11. Dahlin A, Zach M, Rindzevicius T, Kall M, Sutherland DS, Hook F. Localized surface plasmon resonance sensing of lipid-membrane-mediated biorecognition events. J Am Chem Soc. 2005;127:5043–8.

    Article  CAS  Google Scholar 

  12. Marinakos SM, Chen S, Chilkoti A. Plasmonic detection of a model analyte in serum by a gold nanorod sensor. Anal Chem. 2007;79:5278–83.

    Article  CAS  Google Scholar 

  13. Fujiwara K, Watarai H, Itoh H, Nakahama E, Ogawa N. Measurement of antibody binding to protein immobilized on gold nanoparticles by localized surface plasmon spectroscopy. Anal Bioanal Chem. 2006;386:639–44.

    Article  CAS  Google Scholar 

  14. Chen C-D, Cheng S-F, Chau L-K, Wang CRC. Sensing capability of the localized surface plasmon resonance of gold nanorods. Biosens Bioelectron. 2007;22:926–32.

    Article  CAS  Google Scholar 

  15. Gervais T, Jensen KF. Mass transport and surface reactions in microfluidic systems. Chem Eng Sci. 2006;61:1102–21.

    Article  CAS  Google Scholar 

  16. Dejardin P, Vasina EN. An accurate simplified data treatment for the initial adsorption kinetics in conditions of laminar convection in a slit: application to protein adsorption. Colloids Surf B Biointerfaces. 2004;33:121–7.

    Article  CAS  Google Scholar 

  17. Nair PR, Alam MA. Performance limits of nanobiosensors. Appl Phys Lett. 2006;88:233120.

    Article  Google Scholar 

  18. Cui Y, Wei QQ, Park HK, Lieber CM. Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science. 2001;293:1289–92.

    Article  CAS  Google Scholar 

  19. Gu LQ, Braha O, Conlan S, Cheley S, Bayley H. Stochastic sensing of organic analytes by a pore-forming protein containing a molecular adapter. Nature. 1999;398:686–90.

    Article  CAS  Google Scholar 

  20. Besteman K, Lee JO, Wiertz FGM, Heering HA, Dekker C. Enzyme-coated carbon nanotubes as single-molecule biosensors. Nano Lett. 2003;3:727–30.

    Article  CAS  Google Scholar 

  21. Bayley H, Martin CR. Resistive-pulse sensing—from microbes to molecules. Chem Rev. 2000;100:2575–94.

    Article  CAS  Google Scholar 

  22. Wax A, Sokolov K. Molecular imaging and darkfield microspectroscopy of live cells using gold plasmonic nanoparticles. Laser Photon Rev. 2009;3:146–58.

    Article  CAS  Google Scholar 

  23. Nusz GJ, Curry AC, Marinakos SM, Wax A, Chilkoti A. Rational selection of gold nanorod geometry for label-free plasmonic biosensors. ACS Nano. 2009;3(4):795–806.

    Article  CAS  Google Scholar 

  24. Armani AM, Kulkarni RP, Fraser SE, Flagan RC, Vahala KJ. Label-free, single-molecule detection with optical microcavities. Science. 2007;317:783–7.

    Article  CAS  Google Scholar 

  25. Curry A, Nusz G, Chilkoti A, Wax A. Analysis of total uncertainty in spectral peak measurements for plasmonic nanoparticle-based biosensors. Appl Opt. 2007;46:1931–9.

    Article  Google Scholar 

  26. Gillis EH, Gosling JP, Sreenan JM, Kane M. Development and validation of a biosensor-based immunoassay for progesterone in bovine milk. J Immunol Methods. 2002;267:131–8.

    Article  CAS  Google Scholar 

  27. Rosi NL, Mirkin CA. Nanostructures in biodiagnostics. Chem Rev. 2005;105:1547–62.

    Article  CAS  Google Scholar 

  28. Mitchell JS, Wu YQ, Cook CJ, Main L. Sensitivity enhancement of surface plasmon resonance biosensing of small molecules. Anal Biochem. 2005;343:125–35.

    Article  CAS  Google Scholar 

  29. Neely A, Perry C, Varisli B, Singh AK, Arbneshi T, Senapati D, et al. Ultrasensitive and highly selective detection of Alzheimer’s disease biomarker using two-photon rayleigh scattering properties of gold nanoparticle. ACS Nano. 2009;3:2834–40.

    Article  CAS  Google Scholar 

  30. Kreuzer MP, Quidant R, Salvador JP, Marco MP, Badenes G. Colloidal-based localized surface plasmon resonance (LSPR) biosensor for the quantitative determination of stanozolol. Anal Bioanal Chem. 2008;391:1813–20.

    Article  CAS  Google Scholar 

  31. Mock JJ, Barbic M, Smith DR, Schultz DA, Schultz S. Shape effects in plasmon resonance of individual colloidal silver nanoparticles. J Chem Phys. 2002;116(15):6755–9.

    Article  CAS  Google Scholar 

  32. Mock JJ, Smith DR, Schultz S. Local refractive index dependence of plasmon resonance spectra from individual nanoparticles. Nano Lett. 2003;3:485–91.

    Article  CAS  Google Scholar 

  33. Schultz DA, Mock JJ, Schultz S, Smith DR. Single-target molecule detection with nonbleaching multicolor optical immunolabels. Proc Natl Acad Sci U S A. 2000;97:996–1001.

    Article  CAS  Google Scholar 

  34. Mock JJ, Hill RT, Degiron A, Zauscher S, Chilkoti A, Smith DR. Distance-dependent plasmon resonant coupling between a gold nanoparticle and gold film. Nano Lett. 2008;8(8):2245–52.

    Article  CAS  Google Scholar 

  35. Sonnichsen C, Geier S, Hecker NE, von Plessen G, Feldmann J, Ditlbacher H, et al. Spectroscopy of single metallic nanoparticles using total internal reflection microscopy. Appl Phys Lett. 2000;77:2949–51.

    Article  CAS  Google Scholar 

  36. Curry A, Hwang WL, Wax A. Epi-illumination through the microscope objective applied to darkfield imaging and microspectroscopy of nanoparticle interaction with cells in culture. Opt Express. 2006;14:6535–42.

    Article  Google Scholar 

  37. Curry AC, Crow M, Wax A. Molecular imaging of epidermal growth factor receptor in live cells with refractive index sensitivity using dark-field microspectroscopy and immunotargeted nanoparticles. J Biomed Opt. 2008;13(1):014022.

    Article  Google Scholar 

  38. Raschke G, Kowarik S, Franzl T, Sonnichsen C, Klar TA, Feldmann J, et al. Biomolecular recognition based on single gold nanoparticle light scattering. Nano Lett. 2003;3:935–8.

    Article  CAS  Google Scholar 

  39. Liu GL, Doll JC, Lee LP. High-speed multispectral imaging of nanoplasmonic array. Opt Express. 2005;13:8520–5.

    Article  Google Scholar 

  40. Rodriguez-Fernandez J, Novo C, Myroshnychenko V, Funston AM, Sanchez-Iglesias A, Pastoriza-Santos I, et al. Spectroscopy, imaging, and modeling of individual gold decahedra. J Phys Chem C. 2009;113:18623–31.

    Article  CAS  Google Scholar 

  41. McFarland AD, Van Duyne RP. Single silver nanoparticles as real-time optical sensors with zeptomole sensitivity. Nano Lett. 2003;3:1057–62.

    Article  CAS  Google Scholar 

  42. Nusz GJ, Marinakos SM, Curry AC, Dahlin A, Höök F, Wax A, et al. Label-free plasmonic detection of biomolecular binding by a single gold nanorod. Anal Chem. 2008;80:984–9.

    Article  CAS  Google Scholar 

  43. Curry A, Nusz G, Chilkoti A, Wax A. Substrate effect on refractive index dependence of plasmon resonance for individual silver nanoparticles observed using darkfield micro-spectroscopy. Opt Express. 2005;13:2668–77.

    Article  CAS  Google Scholar 

  44. Yguerabide J, Yguerabide EE. Light-scattering submicroscopic particles as highly fluorescent analogs and their use as tracer labels in clinical and biological applications—I. Theory. Anal Biochem. 1998;262:137–56.

    Article  CAS  Google Scholar 

  45. Prescott SW, Mulvaney P. Gold nanorod extinction spectra. J Appl Phys. 2006;99:123504.

    Article  Google Scholar 

  46. Kreibig U, Gartz M, Hilger A. Mie resonances: sensors for physical and chemical cluster interface properties. Ber Bunsen Gesellsch Phys Chem Chem Phys. 1997;101:1593–604.

    Article  CAS  Google Scholar 

  47. Nath N, Chilkoti A. Label-free biosensing by surface plasmon resonance of nanoparticles on glass: optimization of nanoparticle size. Anal Chem. 2004;76:5370–8.

    Article  CAS  Google Scholar 

  48. Raschke G, Brogl S, Susha AS, Rogach AL, Klar TA, Feldmann J, et al. Gold nanoshells improve single nanoparticle molecular sensors. Nano Lett. 2004;4:1853–7.

    Article  CAS  Google Scholar 

  49. Haes AJ, Van Duyne RP. A nanoscale optical biosensor: sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles. J Am Chem Soc. 2002;124:10596–604.

    Article  CAS  Google Scholar 

  50. Chumanov G, Sokolov K, Gregory BW, Cotton TM. Colloidal metal films as a substrate for surface-enhanced spectroscopy. J Phys Chem. 1995;99:9466–71.

    Article  CAS  Google Scholar 

  51. Nikoobakht B, El-Sayed MA. Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method. Chem Mater. 2003;15:1957–62.

    Article  CAS  Google Scholar 

  52. Rindzevicius T, Alaverdyan Y, Dahlin A, Hook F, Sutherland DS, Kall M. Plasmonic sensing characteristics of single nanometric holes. Nano Lett. 2005;5:2335–9.

    Article  CAS  Google Scholar 

  53. Baciu CL, Becker J, Janshoff A, Sonnichsen C. Protein-membrane interaction probed by single plasmonic nanoparticles. Nano Lett. 2008;8:1724–8.

    Article  CAS  Google Scholar 

  54. Hernandez FJ, Dondapati SK, Ozalp VC, Pinto A, O’Sullivan CK, Klar TA, et al. Label free optical sensor for avidin based on single gold nanoparticles functionalized with aptamers. J Biophotonics. 2009;2:227–31.

    Article  CAS  Google Scholar 

  55. Xu XD, Cortie MB. Shape change and color gamut in gold nanorods, dumbbells, and dog bones. Adv Funct Mater. 2006;16:2170–6.

    Article  CAS  Google Scholar 

  56. Jung LS, Campbell CT, Chinowsky TM, Mar MN, Yee SS. Quantitative interpretation of the response of surface plasmon resonance sensors to adsorbed films. Langmuir. 1998;14:5636–48.

    Article  CAS  Google Scholar 

  57. Haes AJ, Van Duyne RP, Zou SL, Schatz GC. Nanoscale optical biosensor: short range distance dependence of the localized surface plasmon resonance of noble metal nanoparticles. J Phys Chem B. 2004;108:6961–8.

    Article  CAS  Google Scholar 

  58. Hao E, Schatz GC. Electromagnetic fields around silver nanoparticles and dimers. J Chem Phys. 2004;120:357–66.

    Article  CAS  Google Scholar 

  59. Imura K, Okamoto H, Nagahra T. Plasmon mode imaging of single gold nanorods. J Am Chem Soc. 2004;126:12730–1.

    Article  CAS  Google Scholar 

  60. Kuwata H, Tamaru H, Esumi K, Miyano K. Resonant light scattering from metal nanoparticles: practical analysis beyond Rayleigh approximation. Appl Phys Lett. 2003;83:4625–7.

    Article  CAS  Google Scholar 

  61. Miller MM, Lazarides AA. Sensitivity of metal nanoparticle plasmon resonance band position to the dielectric environment as observed in scattering. J Opt A Pure Appl Opt. 2006;8:S239–49.

    Article  Google Scholar 

  62. Neish CS, Martin IL, Henderson RM, Edwardson JM. Direct visualization of ligand-protein interactions using atomic force microscopy. Br J Pharmacol. 2002;135:1943–50.

    Article  CAS  Google Scholar 

  63. Weber PC, Ohlendorf DH, Wendoloski JJ, Salemme FR. Structural origins of high-affinity biotin binding to streptavidin. Science. 1989;243:85–8.

    Article  CAS  Google Scholar 

  64. Hendrickson WA, Pahler A, Smith JL, Satow Y, Merritt EA, Phizackerley RP. Crystal-structure of core streptavidin determined from multiwavelength anomalous diffraction of synchrotron radiation. Proc Natl Acad Sci U S A. 1989;86:2190–4.

    Article  CAS  Google Scholar 

  65. Hinrichsen EL, Feder J, Jossang T. Geometry of random sequential adsorption. J Stat Phys. 1986;44:793–827.

    Article  Google Scholar 

  66. Link S, El-Sayed MA. Spectroscopic determination of the melting energy of a gold nanorod. J Chem Phys. 2001;114:2362–8.

    Article  CAS  Google Scholar 

  67. Chang SS, Shih CW, Chen CD, Lai WC, Wang CRC. The shape transition of gold nanorods. Langmuir. 1999;15:701–9.

    Article  CAS  Google Scholar 

  68. Muskens OL, Bachelier G, Del Fatti N, Vallee F, Brioude A, Jiang XC, et al. Quantitative absorption spectroscopy of a single gold nanorod. J Phys Chem C. 2008;112:8917–21.

    Article  CAS  Google Scholar 

  69. Link S, El-Sayed MA. Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods. J Phys Chem B. 1999;103:8410–26.

    Article  CAS  Google Scholar 

  70. Link S, Mohamed MB, El-Sayed MA. Simulation of the optical absorption spectra of gold nanorods as a function of their aspect ratio and the effect of the medium dielectric constant. J Phys Chem B. 1999;103:3073–7.

    Article  CAS  Google Scholar 

  71. Beeram SR, Zamborini FP. Selective attachment of antibodies to the edges of gold nanostructures for enhanced localized surface plasmon resonance biosensing. J Am Chem Soc. 2009;131:11689.

    Article  CAS  Google Scholar 

  72. Dahlin AB, Tegenfeldt JO, Hook F. Improving the instrumental resolution of sensors based on localized surface plasmon resonance. Anal Chem. 2006;78:4416–23.

    Article  CAS  Google Scholar 

  73. Kim DK, Kerman K, Hiep HM, Saito M, Yamamura S, Takamura Y, et al. Label-free optical detection of aptamer-protein interactions using gold-capped. Anal Biochem. 2008;379:1–7.

    Article  CAS  Google Scholar 

  74. Frank Jeyson H, Srujan Kumar D, Ozalp VC, Alessandro P, Ciara KOS, Thomas AK, et al. Label free optical sensor for Avidin based on single gold nanoparticles functionalized with aptamers. J Biophotonics. 2009;2:227–31.

    Article  Google Scholar 

  75. Stewart ME, Anderton CR, Thompson LB, Maria J, Gray SK, Rogers JA, et al. Nanostructured plasmonic sensors. Chem Rev. 2008;108:494–521.

    Article  CAS  Google Scholar 

  76. Qavi AJ, Washburn AL, Byeon JY, Bailey RC. Label-free technologies for quantitative multiparameter biological analysis. Anal Bioanal Chem. 2009;394:121–35.

    Article  CAS  Google Scholar 

  77. Hoa XD, Kirk AG, Tabrizian M. Towards integrated and sensitive surface plasmon resonance biosensors: a review of recent progress. Biosens Bioelectron. 2007;23:151–60.

    Article  CAS  Google Scholar 

  78. Miller MM, Lazarides AA. Sensitivity of metal nanoparticle surface plasmon resonance to the dielectric environment. J Phys Chem B. 2005;109:21556–65.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashutosh Chilkoti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this chapter

Cite this chapter

Nusz, G., Chilkoti, A. (2012). Individual Plasmonic Nanostructures as Label Free Biosensors. In: Dmitriev, A. (eds) Nanoplasmonic Sensors. Integrated Analytical Systems. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3933-2_5

Download citation

Publish with us

Policies and ethics