Skip to main content

The Alpine Treeline Ecotone in the Southernmost Swedish Scandes: Dynamism on Different Scales

  • Chapter
  • First Online:
Ecotones Between Forest and Grassland

Abstract

Alpine (altitudinal) treeline ecotones are elusive, spatially heterogeneous and dynamic transitional zones between closed mountain forest and treeless alpine tundra. From a distance the may look sharp, but a closer view usually reveals a highly complex structural pattern (Kullman 1979). Thermal growth limitation is considered as the fundamental part of the mechanism that creates and maintains the treeline ecotone (Grace et al. 2002; Hoch and Körner 2003; Holtmeier 2003; Kullman 1998, 2007a, 2010a; Diaz et al. 2003; Lloyd and Fastie 2002). At finer scales, the straight thermal forcing is modulated by other agents, e.g., topography, geomorphology, wind, soil depth, species interactions, fire, herbivory, human impacts, and site history (Walsh et al. 1994; Holtmeier and Broll 2005; Gehrig-Fasel et al. 2007; Kullman and Öberg 2009; Leonelli et al. 2011; Aune et al. 2011). Among these, wind appears to have a superior role (cf. Seppälä 2004; Holtmeier and Broll 2010; Kullman 2010a).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alexandersson H (2006) Klimat i förändring. En jämförelse av temperatur och nederbörd 1991–2005 med 1961–1990. SMHI Faktablad 29:1–8

    Google Scholar 

  • Alftine K, Malanson GP (2004) Directional positive feedback and pattern at an alpine treeline. J Veg Sci 15:3–12

    Google Scholar 

  • Allard A (2003) Vegetation changes in mountainous areas. PhD-thesis. Department of Physical Geography and Quaternary Geology. Stockholm University

    Google Scholar 

  • Almquist E (1949) Dalarnas flora i växtgeografisk belysning. In: Natur i Dalarna. K-H, Forsslund C, Curry-Lindahl C (eds). Bokförlaget Svensk Natur, Göteborg, pp 55–7

    Google Scholar 

  • Aune S, Hofgaard A, Söderström L (2011) Contrasting climate- and land-use-driven tree encroachment patterns of subarctic tundra in northern Norway and the Kola Peninsula. Can J For Res 41:437–449

    Google Scholar 

  • Baker WL, Weisberg PJ (1995) Landscape analysis of the forest-tundra ecotone in Rocky Mountain National Park, Colorado. Prof Geogr 47:361–375

    Google Scholar 

  • Bakke J, Lie Ø, Dahl SO, Nesje A, Bjune AE (2008) Strength and spatial patterns of the Holocene wintertime westerlies in the NE Atlantic region. Glob Planet Chang 60:28–41

    Google Scholar 

  • Bang-Andersen S (2006) Charcoal in hearths: a clue to the reconstruction of palaeo-environments of Mesolithic dwelling sites. Archaeol Environ 12:5–16

    Google Scholar 

  • Bekker MF (2005) Positive feedback between tree establishment and patterns of subalpine forest advancement, Glacier National Park, Montana, USA. Arct Antarct Alp Res 37:97–107

    Google Scholar 

  • Bernes C (1996) Arktisk miljö i Norden—orörd, exploaterad, förorenad. Nordiska ministerrådet, Stockholm

    Google Scholar 

  • Butler DR, Malanson GP, Walsh SJ, Fagre DB (2007) Influences of geomorphology and geology on alpine treeline in the American west—more important than climatic influences? Phys Geogr 28:434–450

    Google Scholar 

  • Carlsson BÅ, Karlsson PS, Svensson BM (1999) Alpine and subalpine vegetation. Acta Phytogeogr Suec 84:75–89

    Google Scholar 

  • Caseldine CJ, Matthews JA (1987) Podzol development, vegetation change and glacier variations at Haugabreen, southern Norway. Boreas 16:215–230

    Google Scholar 

  • COHMAP members (1988) Climatic changes of the last 18.000 years: observations and simulations. Science 241:1043–1052

    Google Scholar 

  • Danby RK, Hik DK (2007) Variability, contingency and rapid change in recent subarctic alpine treeline dynamics. J Ecol 95:352–363

    Google Scholar 

  • Diaz HF, Grosjean M, Graumlich L (2003) Climate variability and change in high elevation regions: past, present and future. Clim Chang 59:1–4

    Google Scholar 

  • Elliot GP, Kipfmueller KF (2010) Multi-scale influences of slope aspect and spatial pattern on ecotonal dynamics at upper treeline in the Southern Rocky Mountains, U.S.A. Arct Antarct Alp Res 42:45–56

    Google Scholar 

  • Enquist F (1933) Trädgränsundersökningar. Svenska Skogsvårdsför Tidskr 31:145–191

    Google Scholar 

  • Erkamo V (1956) Untersuchungen über die pflanzenbiologischen und einige andere Folgerscheinungen der neuzeitlichen Klimaschwankung in Finnland. Ann Bot Soc Zool Bot Fenn Vanamo 28:1–283

    Google Scholar 

  • Esper J, Schweingruber FH (2004) Large-scale tree-line changes recorded in Siberia. Geophys Res Lett 31:1–5

    Google Scholar 

  • Fagre DB, Peterson DL, Hessle AE (2003) Taking the pulse of mountains: ecosystem responses to climatic variability. Clim Chang 59:263–282

    Google Scholar 

  • Forsslund K-E (1921) Omkring Storvaln. Sveriges sydligatse fjäll. Sveriges Natur 1921:33–42

    Google Scholar 

  • Gehrig-Fasel J, Guisan A, Zimmermann NE (2007) Tree line shifts in the Swiss Alps. Climate change and land abandonment. J Veg Sci 18:571–582

    Google Scholar 

  • Germino MJ, Smith WK, Resor AC (2002) Conifer seedling distribution and survival in an alpine-tundra ecotone. Plant Ecol 162:157–168

    Google Scholar 

  • Giesecke T (2005) Holocene forest development in the central Scandes Mountains, Sweden. Veg Hist Archaeobot 14:133–147

    Google Scholar 

  • Gosz JR (1993) Ecotone hierarchies. Ecol Appl 3:369–373

    Google Scholar 

  • Grace J, Berninger F, Nagy L (2002) Impacts of climate change on the tree line. Ann Bot 90:537–544

    PubMed  CAS  Google Scholar 

  • Grove JM (1988) The little Ice Age. Methuen, New York

    Google Scholar 

  • Hallinger M, Manthey M, Wilmking M (2010) Establishing a missing link: warm summers and winter snow cover promote shrub expansion into alpine tundra in Scandinavia. New Phytol 186:890–899

    PubMed  Google Scholar 

  • Harsch MA, Hulme PE, McGlone MS, Duncan RP (2009) Are treelines advancing? A global meta-analysis of treeline response to climate warming. Ecol Lett 12:1040–1049

    PubMed  Google Scholar 

  • Hoch G, Körner C (2003) The carbon charging of pines at the climatic treeline: a global comparison. Oecologia 135:10–21

    PubMed  Google Scholar 

  • Hofgaard A, Wilmann B (2002) Plant distribution across the forest-tundra ecotone: the importance of treeline position. Ecoscience 9:375–385

    Google Scholar 

  • Holtmeier F-K (1981) What does the term “krummholz” really mean? Observations with special reference to the Alps and the Colorado Front Range. Mt Res Dev 1:253–260

    Google Scholar 

  • Holtmeier F-K (2003) Mountain timberlines: ecology, patchiness and dynamics. Kluwer, Dordrecht

    Google Scholar 

  • Holtmeier F-K, Broll G (2005) Sensitivity and response of northern hemisphere altitudinal and polar treelines to environmental change at landscape and local scales. Glob Ecol Biogeogr 14:395–410

    Google Scholar 

  • Holtmeier F-K, Broll G (2007) Treeline advance—driving processes and adverse factors. Landsc Online 1:1–33

    Google Scholar 

  • Holtmeier F-K, Broll G (2010) Wind as an ecological agent at treeline in North America, the Alps and the European Subarctic. Phys Geogr 31:203–233

    Google Scholar 

  • Huldén L (2001) Ektunnor och den medeltida värmeprioden i Satakunta. Terra 113:171–178

    Google Scholar 

  • Hustich I (1937) Pflanzengeographische Studien im Gebiet der niederen Fjelde im westlichen Finnischen Lappland. Acta Bot Fenn 19:1–156

    Google Scholar 

  • Hustich I (1948) The Scotch pine in northernmost Finland and its dependence on the climate in the last decades. Acta Bot Fenn 42:1–75

    Google Scholar 

  • Hustich I (1958) On the recent expansion of the Scotch pine in northern Europe. Fennia 82:1–25

    Google Scholar 

  • Hustich I (1978) The growth of Scots pine in northern Lapland, 1928–77. Ann Bot Soc Zool Bot Fenn Vanamo 15:241–252

    Google Scholar 

  • Hustich I (1979) Ecological concepts and biogeographical zonation in the north: the need for a generally accepted terminology. Holarct Ecol 2:208–217

    Google Scholar 

  • IPCC (2007) Climate change 2007. The physical scientific basis. Cambridge University Press, Cambridge

    Google Scholar 

  • Kapralov DS, Shiyatov SG, Moiseev PA, Fomin VV (2006) Changes in composition, structure, and altitudinal distribution of low forests at the upper limit of their growth in the Northern Ural Mountains. Russ J Ecol 37:367–372

    Google Scholar 

  • Kardell L, Arvidsson B, Nilsson E (1982) Tandövala—vårt sydligaste lågfjäll. Sveriges Lantbruksuniv Avd För Landskapsvård Rapport 24:1–157

    Google Scholar 

  • Karlén W (1976) Lacustrine sedimenst and tree-limit variations as indicators of Holocene climatic fluctuations in Lappland: northern Sweden. Geogr Ann 58A:1–34

    Google Scholar 

  • Karlén W (2008) Recent changes in climate: natural or forced by human activity. Ambio Special Report 14:483–488

    Google Scholar 

  • Kellgren AG (1891) Om de skogbildande trädens utbredning i Dalarnes fjältrakter. Botaniska Notiser 1891:182–186

    Google Scholar 

  • Kihlman AO (1890) Pflanzenbiologische Studien aus Russich Lappland. Acta Soc Fauna Flora Fenn 68(3):1–263

    Google Scholar 

  • Kjällgren L, Kullman L (1998) Spatial patterns and structure of the mountain birch tree-limit in the southern Swedish Scandes—a regional perspective. Geogr Ann 80A:1–16

    Google Scholar 

  • Klanderud K, Birks HJ (2003) Recent increases in species richness and shifts in altitudinal distributions of Norwegian mountain plants. Holocene 13:1–6

    Google Scholar 

  • Körner C (1999) Alpine plant life. Springer, Berlin

    Google Scholar 

  • Körner C (2007) Climatic treelines: conventions, global patterns, causes. Erdkunde 61:316–324

    Google Scholar 

  • Kullman L (1979) Change and stability in the altitude of the birch tree-limit in the southern Swedish Scandes 1915–1975. Acta Phytogeogr Suec 65:1–121

    Google Scholar 

  • Kullman L (1980) Radiocarbon dating of subfossil Scots pine (Pinus sylvestris L.) in the southern Swedish Scandes. Boreas 9:101–106

    Google Scholar 

  • Kullman L (1986a) Demography of Betula pubescens ssp. tortuosa sown in contrasting habitats close to the birch limit in Central Sweden. Vegetatio 65:13–20

    Google Scholar 

  • Kullman L (1986b) Recent tree-limit history of Picea abies in the southern Swedish Scandes. Can J For Res 16:761–771

    Google Scholar 

  • Kullman L (1987) A decade of tree-limit monitoring in the southern Swedish Scandes. UNGI Rapport 65:191–202

    Google Scholar 

  • Kullman L (1993) Tree limit dynamics of Betula pubescens ssp. tortuosa in relation to climate variability: evidence from central Sweden. J Veg Sci 4:765–772

    Google Scholar 

  • Kullman L (1997) Tree-limit stress and disturbance. A 25-year survey of geoecological change in the Scandes Mountains of Sweden. Geogr Ann 79A:139–165

    Google Scholar 

  • Kullman L (1998) Tree-limits and montane forests in the Swedish Scandes: sensitive biomonitors of climate change and variability. Ambio 27:312–321

    Google Scholar 

  • Kullman L (2000) Tree-limit rise and recent warming: a geoecological case study from the Swedish Scandes. Norw J Geogr 54:49–59

    Google Scholar 

  • Kullman L (2001a) 20th century climate warming and tree-limit rise in the southern Scandes. Ambio 30:72–80

    PubMed  CAS  Google Scholar 

  • Kullman L (2001b) Immigration of Picea abies into North-Central Sweden. New evidence of regional expansion and tree-limit evolution. Nordic J Bot 21:39–54

    Google Scholar 

  • Kullman L (2003) Recent reversal of Neoglacial climate cooling trend in the Swedish Scandes as evidenced by mountain birch tree-limit rise. Glob Planet Chang 36:77–88

    Google Scholar 

  • Kullman L (2004a) Tree-limit and landscape evolution at the southern fringe of the Swedish Scandes (Dalarna province)—Holocene and 20th century perspectives. Fennia 182:73–94

    Google Scholar 

  • Kullman L (2004b) A face of global warming—“ice birches” and a changing alpine plant cover. GeoÖko 25:181–202

    Google Scholar 

  • Kullman L (2005a) Gamla och nya träd på Fulufjället—vegetationshistoria på hög nivå. Sven Bot Tidskr 99:315–329

    Google Scholar 

  • Kullman L (2005b) Trädgränsen i Dalafjällen. Del. 2. Tandövala—försvinnande sydlig fjällvärld. Länsstyrelsen Dalarnas Län Miljövårdsenheten Rapport 10:1–25

    Google Scholar 

  • Kullman L (2005c) Pine (Pinus sylvestris) treeline dynamics during the past millennium a population study in west-central Sweden. Ann Bot Soc Zool Bot Fenn Vanamo 42:95–106

    Google Scholar 

  • Kullman L (2005d) Wind-conditioned 20th century decline of birch treeline vegetation in the Swedish Scandes. Arctic 58:286–294

    Google Scholar 

  • Kullman L (2007a) Tree line population monitoring of Pinus sylvestris in the Swedish Scandes, 1973–2005: implications for tree line theory and climate change ecology. J Ecol 95:41–52

    Google Scholar 

  • Kullman L (2007b) Modern climate change and shifting ecological states of the subalpine/alpine landscape in the Swedish Scandes. GeoÖko 28:187–221

    Google Scholar 

  • Kullman L (2007c) Long-term geobotanical observations of climate change impacts in the Scandes of West-Central Sweden. Nord J Bot 24:445–467

    Google Scholar 

  • Kullman L (2008) Thermophilic tree species reinvade subalpine Sweden—early responses to anomalous Late Holocene warming. Arct Antarct Alp Res 40:104–110

    Google Scholar 

  • Kullman L (2010a) One century of treeline change and stability—experiences from the Swedish Scandes. Landsc Online 17:1–31

    Google Scholar 

  • Kullman L (2010b) Alpine flora dynamics—a critical review of responses to climate change in the Swedish Scandes since the early 1950s. Nord J Bot 28:398–408

    Google Scholar 

  • Kullman L (2010c) A richer, greener and smaller alpine world: review and projection of warming-induced plant cover change in the Swedish Scandes. Ambio 39:159–169

    PubMed  Google Scholar 

  • Kullman L (2010) Fjällens nya ansikte. Rikare, grönare, vackrare. Lustgården 90:13–24. In Swedish with English summary

    Google Scholar 

  • Kullman L, Kjällgren L (2006) Holocene treeline evolution in the Swedish Scandes: recent treeline rise and climate change in a long-term perspective. Boreas 35:159–168

    Google Scholar 

  • Kullman L, Öberg L (2009) Post-Little Ice Age tree line rise and climate warming in the Swedish Scandes: a landscape ecological perspective. J Ecol 97:415–429

    Google Scholar 

  • Kupfer JA, Cairns DM (1996) The suitability of montane ecotones as indicators of global climatic change. Prog Phys Geogr 20:253–272

    Google Scholar 

  • Laaksonen K (1976) The dependence of mean air temperatures upon latitude and altitude in Fennoscandia. Ann Acad Sci Fenn Ser A3 199:1–19

    Google Scholar 

  • Leonelli G, Pelfini M, Morra di Cella U, Garavaglia V (2011) Climate warming and the recent treeline shift in the European Alps: the role of geomorphological factors in high-altitude sites. Ambio 40:264–273

    PubMed  Google Scholar 

  • Lidberg R, Lindström H (2010) Medelpads flora. SBF-förlaget, Uppsala

    Google Scholar 

  • Ljungqvist FC (2009) Temperature proxy records covering the last two millennia: a tabular and visual overview. Geogr Ann 91A:11–29

    Google Scholar 

  • Lloyd AH (2005) Ecological histories from Alaskan treelines provide insight into future change. Ecology 86:1687–1695

    Google Scholar 

  • Lloyd AH, Fastie CL (2002) Spatial and temporal variability in the growth and climate response of treelines in Alaska. Clim Chang 52:481–509

    Google Scholar 

  • Lundqvist G (1948) De svenska fjällens natur. Svenska Turistföreningens Förlag, Stockholm

    Google Scholar 

  • Lundqvist G (1951) Beskrivning till jordartskarta över Kopparbergs län. Sver Geol Und Ca 21:1–213

    Google Scholar 

  • Malanson GP (2001) Complex responses to global change at alpine treeline. Phys Geogr 22:333–342

    Google Scholar 

  • Mascher JW (2007) Nya fynd i Ångermanlands flora. Sven Bot Tidskr 101:321–346

    Google Scholar 

  • Miehe G, Miehe S (2000) Comparative high mountain research on the treeline ecotone under human impact. Erdkunde 54:34–50

    Google Scholar 

  • Moberg A, Tuomenvirta AH, Nordli Ø (2005) Recent climatic trends. In: Seppälä M (ed) The physical geography of Fennoscandia. Oxford University Press, Oxford, pp 112–133

    Google Scholar 

  • Moen J, Aune K, Edenius L, Agerbjörn A (2004) Potential effects of climate change on treeline position in the Swedish mountains. Ecol Soc 16:1–10

    Google Scholar 

  • Moen J, Cairns DM, Lafon CW (2008) Factors structuring the treeline ecotone in Fennoscandia. Plant Ecol Divers 1:77–87

    Google Scholar 

  • Molinari C, Bradshaw RHW, Risbøl O, Lie H, Ohlson M (2005) Long-term vegetational history of a Picea abies stand in south-eastern Norway: implications for the conservation of biological values. Biol Conserv 126:155–165

    Google Scholar 

  • Mossberg B, Stenberg L (2003) Den nya nordiska floran. Wahlström & Wistrand, Stockholm

    Google Scholar 

  • Nägeli W (1969) Waldgrenze und Kampfzone in den Alpen. Hespa Mitt 19:1–44

    Google Scholar 

  • Nagy L (2006) European high mountain (alpine) vegetation and its suitability for indicating climate change impacts. Biol Environ Proc R Ir Acad 106B(3):335–341

    Google Scholar 

  • Noble IR (1993) A model of the responses of ecotones to climate change. Ecol Appl 3:396–403

    Google Scholar 

  • Öberg L (2008) Trädgränsen som indikator för ekologiska klimateffekter i fjällen. Länsstyrelsen i Jämtlands län. Miljö/Fiske Miljöövervakning. Rapport, 2008,01

    Google Scholar 

  • Öberg L (2009) The heart of Härjedalen. Sonfjället. National Park since 1909. Jamtli Förlag, Östersund

    Google Scholar 

  • Öberg L, Kullman L (2011a) Ancient subalpine clonal spruces (Picea abies): sources of postglacial vegetation history in the Swedish Scandes. Arctic 64:183–196

    Google Scholar 

  • Öberg L, Kullman L (2011b) Recent glacier recession—a new source of postglacial treeline and climate history in the Swedish Scandes. Landsc Online 26:1–38

    Google Scholar 

  • Odland A, Høitomt T, Olsen SL (2010) Increasing vascular plant richness on 13 high mountain summits in southern Norway since the early 1970s. Arct Antarct Alp Res 42:458–470

    Google Scholar 

  • Oldhammer B (2005) Varder—en försvinnande naturtyp. Sven Bot Tidskr 99:330–331

    Google Scholar 

  • Paus A (2010) Vegetation and environment of the Rødalen alpine area, Central Norway, with emphasis on the early Holocene. Veget Hist Archeobot 19:29–51

    Google Scholar 

  • Rehfeldt GE, Tchebakova NM, Parfenova YI, Wykoff WR, Kuzmina NA, Milyutin LI (2002) Intraspecific responses to climate in Pinus sylvestris. Glob Chang Biol 8:912–929

    Google Scholar 

  • Renssen H, Seppä H, Heiri O, Roche DM, Goosse H, Fichefet T (2009) The spatial and temporal complexity of the Holocene thermal maximum. Nat Geosci 2:411–414

    CAS  Google Scholar 

  • Robertsson AM (1997) Reinvestigation of the interglacial pollen flora at Leveäniemi, Swedish Lapland. Boreas 26:81–89

    Google Scholar 

  • Samuelsson G (1910) Regionförskjutningar inom Dalarne. Sven Bot Tidskr 4:1–57

    Google Scholar 

  • Samuelsson G (1914) Om Dalafjällen. Ymer 1914:331–345

    Google Scholar 

  • Samuelsson G (1917) Studien über die Vegetation der Hochgebirgsgegenden von Dalarne. N Acta Reg Soc Sci Upsal 4(8):1–253

    Google Scholar 

  • Sedia EG, Ehrenfeld JG (2003) Lichens and mosses promote alternate stable plant communities in the New Jersey pinelands. Oikos 100:447–458

    Google Scholar 

  • Seppälä M (2004) Wind as a geomorphic agent in cold climates. Cambridge University Press, Cambridge

    Google Scholar 

  • Shiyatov SG (2003) Rates of change in the upper treeline ecotone in the Polar Urals. Pages News 11:6–8

    Google Scholar 

  • Sjörs H (1999) The background: geology, climate and zonation. Acta Phytogeogr Suec 84:5–14

    Google Scholar 

  • Skre O, Baxter R, Crawford RMM, Callaghan TV, Fedorkov A (2002) How will the tundra-taiga interface respond to climate change? Ambio Special Report 12:37–46

    Google Scholar 

  • Smith H (1920) Vegetationen och dess utvecklingshistoria i det centralsvenska högfjällsområdet. Almqvist & Wiksell, Uppsala

    Google Scholar 

  • Smith H (1957) En botanisk undersökning av Neans dalgång. K Svenska Vetenskapsakad Avhandl Naturskyddsär 16:1–21

    Google Scholar 

  • Sundqvist MK, Björk RG, Molau U (2008) Establishment of boreal forest species in alpine dwarf-shrub heath in subarctic Sweden. Plant Ecol Divers 1:67–75

    Google Scholar 

  • Tallantire P (1977) A further contribution to the problem of the spread of spruce (Picea abies (L.) Karst.) in Fennoscandia. J Biogeogr 4:219–227

    Google Scholar 

  • Tape K, Sturm M, Racine C (2006) The evidence for shrub expansion in Northern Alaska and the Pan-Arctic. Glob Chang Biol 12:686–702

    Google Scholar 

  • Tinner W, Kaltenrieder P (2005) Rapid responses of high-mountain vegetation to early Holocene environmental changes in the Swiss Alps. J Ecol 93:936–947

    Google Scholar 

  • Tømmervik H, Johansen B, Riseth JÅ, Karlsen SR, Solberg B, Høgda KA (2009) Above ground biomass changes in the mountain birch forests and mountain heaths of Finnmarksvidda, northern Norway, in the period 1957–2006. For Ecol Manag 257:244–257

    Google Scholar 

  • Velle G, Larsen J, Eide W, Peglar SM, Birks HJB (2005) Holocene environmental history and climate at Råtåsjøen, a low-alpine lake in south-central Norway. J Paleolimnol 33:129–153

    Google Scholar 

  • Virtanen R, Eskelinen A, Gaare E (2003) Long-term changes in alpine plant communities in Norway and Finland. In: Nagy L, Grabherr G, Körner C, Thompson DBA (eds) Alpine biodiversity in Europe. Springer, Berlin, pp 411–422

    Google Scholar 

  • Walsh SJ, Butler DR, Allen TR, Malanson GP (1994) Influence of snow patterns and snow avalanches on the alpine treeline ecotone. J Veg Sci 5:657–672

    Google Scholar 

  • Wistrand G (1981) Bidrag till Pite lappmarks växtgeografi. Växtekol Stud 14:1–99

    Google Scholar 

  • Young A, Cairns DM, Lafon CW, Moen J, Martin LE (2011) Dendroclimatic relationships and possible implications for mountain birch and Scots pine at treeline in northern Sweden through the 21st century. Can J For Res 41:450–459

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leif Kullman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kullman, L. (2012). The Alpine Treeline Ecotone in the Southernmost Swedish Scandes: Dynamism on Different Scales. In: Myster, R. (eds) Ecotones Between Forest and Grassland. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3797-0_12

Download citation

Publish with us

Policies and ethics