Skip to main content

Supramolecular Organisation of the Mitochondrial Respiratory Chain: A New Challenge for the Mechanism and Control of Oxidative Phosphorylation

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((volume 748))

Abstract

Recent experimental evidence has replaced the random diffusion model of electron transfer with a model of supramolecular organisation based on specific interactions between individual respiratory complexes. These supercomplexes are detected by blue-native electrophoresis and are found to be functionally relevant by flux control analysis; moreover, they have been isolated and characterised by single-particle electron microscopy. The supramolecular association of individual complexes strongly depends on membrane lipid amount and composition and is affected by lipid peroxidation; it also seems to be modulated by membrane potential and protein phosphorylation. Supercomplex association confers several new properties with respect to the non-associated respiratory complexes to the respiratory chain: the most obvious is substrate channelling, specifically addressing Coenzyme Q and cytochrome c to interact directly with the partner enzymes without the need of a less efficient random diffusion step; in addition, supramolecular association may provide a further rate advantage by conferring long-range conformational changes to the individual complexes. Additional properties are stabilisation of Complex I, as evidenced by the destabilising effect on Complex I of mutations in either Complex III or Complex IV, and prevention of excessive generation of reactive oxygen species. On the basis of the properties described above, we hypothesise that an oxidative stress acts primarily by disassembling supercomplex associations thereby establishing a vicious circle of oxidative stress and energy failure, ultimately leading to cell damage and disease. We provide evidence that in physiological ageing and in some disease states, characterised by oxidative stress and mitochondrial damage, such as heart failure, neurodegenerative disorders and cancer, a loss of supercomplex association occurs, in line with our working hypothesis.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Acin-Perez R, Bayona-Bafaluy MP, Fernandez-Silva P, Moreno-Loshuertos R, Perez-Martos A, Bruno C, Moraes CT, Enriquez JA (2004) Respiratory complex III is required to maintain complex I in mammalian mitochondria. Mol Cell 13:805–815

    PubMed  CAS  Google Scholar 

  • Acín-Pérez R, Fernández-Silva P, Peleato ML, Pérez-Martos A, Enriquez JA (2008) Respiratory active mitochondrial supercomplexes. Mol Cell 32(4):529–539

    PubMed  Google Scholar 

  • Alberts B (1998) The cell as a collection of protein machines: preparing the next generation of molecular biologists. Cell 92:291–294

    PubMed  CAS  Google Scholar 

  • Althoff T, Mills DJ, Popot JL, Kühlbrandt W (2011) Arrangement of electron transport chain components in bovine mitochondrial supercomplex I(1)III(2)IV(1). EMBO J 30(22):4652–4664. doi:10.1038/emboj.2011.324

    PubMed  CAS  Google Scholar 

  • Arthur CR, Morton SL, Dunham LD, Keeney PM, Bennett JP Jr (2009) Parkinson’s disease brain mitochondria have impaired respirasome assembly, age-related increases in distribution of oxidative damage to mtDNA and no differences in heteroplasmic mtDNA mutation abundance. Mol Neurodegener 4:37

    PubMed  Google Scholar 

  • Baracca A, Chiaradonna F, Sgarbi G, Solaini G, Alberghina L, Lenaz G (2010) Mitochondrial complex I decrease is responsible for bioenergetic dysfunction in K-ras transformed cells. Biochim Biophys Acta 1797:314–323

    PubMed  CAS  Google Scholar 

  • Barrientos A, Moraes CT (1999) Titrating the effects of mitochondrial complex I impairment in the cell physiology. J Biol Chem 274:16188–16197

    PubMed  CAS  Google Scholar 

  • Barth PG, Van den Bogert C, Bolhuis PA, Scholte HR, van Gennip AH, Schutgens RB et al (1996) X-linked cardioskeletal myopathy and neutropenia (Barth syndrome): respiratory-chain abnormalities in cultured fibroblasts. J Inherit Metab Dis 19:157–160

    PubMed  CAS  Google Scholar 

  • Bell EL, Klimova T, Chandel NS (2008) Targeting the mitochondria for cancer therapy: regulation of hypoxia-inducible factor by mitochondria. Antioxid Redox Signal 10(3):635–640

    PubMed  CAS  Google Scholar 

  • Bellomo F, Piccoli C, Cocco T, Scacco S, Papa F, Gaballo A et al (2006) Regulation by the cAMP cascade of oxygen free radical balance in mammalian cells. Antioxid Redox Signal 8:495–502

    PubMed  CAS  Google Scholar 

  • Belyaeva EA (2010) Mitochondrial respiratory chain inhibitors modulate the metal-induced inner mitochondrial membrane permeabilization. Acta Biochim Pol 57(4):435–441

    PubMed  CAS  Google Scholar 

  • Bernardi P, Forte M (2007) The mitochondrial permeability transition pore. Novartis Found Symp 287:157–164, discussion 164–169

    PubMed  CAS  Google Scholar 

  • Bianchi C, Fato R, Genova ML, Parenti Castelli G, Lenaz G (2003) Structural and functional organization of complex I in the mitochondrial respiratory chain. Biofactors 18:3–9

    PubMed  CAS  Google Scholar 

  • Bianchi C, Genova ML, Parenti Castelli G, Lenaz G (2004) The mitochondrial respiratory chain is partially organized in a supercomplex assembly: kinetic evidence using flux control analysis. J Biol Chem 279:36562–36569

    PubMed  CAS  Google Scholar 

  • Bonora E, Porcelli AM, Gasparre G, Biondi A, Ghelli A, Carelli V, Baracca A, Tallini G, Martinuzzi A, Lenaz G, Rugolo M, Romeo G (2006) Defective oxidative phosphorylation in thyroid oncocytic carcinoma is associated with pathogenic mitochondrial DNA mutations affecting complexes I and III. Cancer Res 66:6087–6096

    PubMed  CAS  Google Scholar 

  • Boumans H, Grivell LA, Berden JA (1998) The respiratory chain in yeast behaves as a single functional unit. J Biol Chem 273:4872–4877

    PubMed  CAS  Google Scholar 

  • Brandner K, Mick DU, Frazier AE, Taylor RD, Meisinger C, Rehling P (2005) Taz1, an outer mitochondrial membrane protein, affects stability and assembly of inner membrane protein complexes: implications for Barth Syndrome. Mol Biol Cell 16:5202–5214

    PubMed  CAS  Google Scholar 

  • Brandon M, Baldi P, Wallace DC (2006) Mitochondrial mutations in cancer. Oncogene 25(34):4647–4662

    PubMed  CAS  Google Scholar 

  • Braun HP, Sunderhaus S, Boekema EJ, Kouril R (2009) Purification of the cytochrome C reductase/cytochrome C oxidase super complex of yeast mitochondria. Methods Enzymol 456:183–190

    PubMed  CAS  Google Scholar 

  • Brdiczka DG, Zorov DB, Sheu SS (2006) Mitochondrial contact sites: their role in energy metabolism and apoptosis. Biochim Biophys Acta 1762:148–163

    PubMed  CAS  Google Scholar 

  • Brys K, Castelein N, Matthijssens F, Vanfleteren JR, Braeckman BP (2010) Disruption of insulin signalling preserves bioenergetic competence of mitochondria in ageing Caenorhabditis elegans. BMC Biol 8:91

    PubMed  Google Scholar 

  • Bultema JB, Braun HP, Boekema EJ, Kouril R (2009) Megacomplex organization of the oxidative phosphorylation system by structural analysis of respiratory supercomplexes from potato. Biochim Biophys Acta 1787(1):60–67

    PubMed  CAS  Google Scholar 

  • Calabrese V, Scapagnini G, Ravagna A, Colombrita C, Spadaro F, Butterfield DA, Giuffrida Stella AM (2004) Increased expression of heat shock proteins in rat brain during aging: relationship with mitochondrial function and glutathione redox state. Mech Ageing Dev 125:325–335

    PubMed  CAS  Google Scholar 

  • Castellani M, Covian R, Kleinschroth T, Anderka O, Ludwig B, Trumpower BL (2010) Direct demonstration of half-of-the-sites reactivity in the dimeric cytochrome bc1 complex: enzyme with one inactive monomer is fully active but unable to activate the second ubiquinol oxidation site in response to ligand binding at the ubiquinone reduction site. J Biol Chem 285(1):502–510

    PubMed  CAS  Google Scholar 

  • Chance B, Williams GR (1955) A method for the localization of sites for oxidative phosphorylation. Nature 176:250–254

    PubMed  CAS  Google Scholar 

  • Chen JX, Yan SS (2010) Role of mitochondrial amyloid-beta in Alzheimer’s disease. J Alzheimers Dis 20(Suppl 2):S569–S578

    PubMed  Google Scholar 

  • Clarke SD, Salati IMK (1985) Fatty acid-mediated disaggregatiion of acetyl CoA carboxylase in isolated liver cells. Fed Proc 44:2458–2462

    PubMed  CAS  Google Scholar 

  • Claypool SM, Oktay Y, Boontheung P, Loo JA, Koehler CM (2008a) Cardiolipin defines the interactome of the major ADP/ATP carrier protein of the mitochondrial inner membrane. J Cell Biol 182(5):937–950

    PubMed  CAS  Google Scholar 

  • Claypool SM, Boontheung P, McCaffery JM, Loo JA, Koehler CM (2008b) The cardiolipin transacylase, tafazzin, associates with two distinct respiratory components providing insight into Barth syndrome. Mol Biol Cell 19(12):5143–5155

    PubMed  CAS  Google Scholar 

  • Colindres M, Fournier C, Ritter S, Zahnreich S, Decker H, Dencher N, Frenzel M (2007) Increase of oxidative stress in normal human fibroblasts after irradiation. GSI Sci Rep 356

    Google Scholar 

  • Couoh-Cardel SJ, Uribe-Carvajal S, Wilkens S, García-Trejo JJ (2010) Structure of dimeric F1F0-ATP synthase. J Biol Chem 285(47):36447–36455

    PubMed  CAS  Google Scholar 

  • D’Aurelio M, Gajewski CD, Lenaz G, Manfredi G (2006) Respiratory chain supercomplexes set the threshold for respiration defects in human mtDNA mutant cybrids. Hum Mol Genet 15:2157–2169

    PubMed  Google Scholar 

  • Dalmonte ME, Forte E, Genova ML, Giuffrè A, Sarti P, Lenaz G (2009) Control of respiration by cytochrome c oxidase in intact cells: role of the membrane potential. J Biol Chem 284(47): 32331–32335

    PubMed  CAS  Google Scholar 

  • Damjanovich S, Gaspar R Jr, Pieri C (1997) Dynamic receptor superstructures at the plasma membrane. Q Rev Biophys 30:67–106

    PubMed  CAS  Google Scholar 

  • Dani D, Shimokawa I, Komatsu T, Higami Y, Warnken U, Schokraie E, Schnölzer M, Krause F, Sugawa MD, Dencher NA (2009) Modulation of oxidative phosphorylation machinery signifies a prime mode of anti-ageing mechanism of calorie restriction in male rat liver mitochondria. Biogerontology 11(3):321–334

    PubMed  Google Scholar 

  • Dante S, Hauss T, Dencher NA (2002) Beta-amyloid 25 to 35 is intercalated in anionic and zwitterionic lipid membranes to different extents. Biophys J 83(5):2610–2616

    PubMed  CAS  Google Scholar 

  • Dante S, Hauss T, Brandt A, Dencher NA (2008) Membrane fusogenic activity of the Alzheimer’s peptide A beta(1-42) demonstrated by small-angle neutron scattering. J Mol Biol 376(2):393–404

    PubMed  CAS  Google Scholar 

  • Davies KM, Strauss M, Daum B, Kief JH, Osiewacz HD, Rycovska A, Zickermann V, Kühlbrandt W (2011) Macromolecular organization of ATP synthase and complex I in whole mitochondria. Proc Natl Acad Sci USA 108(34):14121–14126

    PubMed  CAS  Google Scholar 

  • De Rasmo D, Panelli D, Sardanelli AM, Papa S (2008) cAMP-dependent protein kinase regulates the mitochondrial import of the nuclear encoded NDUFS4 subunit of complex I. Cell Signal 20:989–997

    PubMed  Google Scholar 

  • Dencher NA, Frenzel M, Reifschneider NH, Sugawa M, Krause F (2007) Proteome alterations in rat mitochondria caused by aging. Ann N Y Acad Sci 1100:291–298

    PubMed  CAS  Google Scholar 

  • Diaz F, Fukui H, Garcia S, Moraes CT (2006) Cytochrome c oxidase is required for the assembly/stability of respiratory complex I in mouse fibroblasts. Mol Cell Biol 26:4872–4881

    PubMed  CAS  Google Scholar 

  • Dienhart MK, Stuart RA (2008) The yeast Aac2 protein exists in physical association with the cytochrome bc1-COX supercomplex and the TIM23 machinery. Mol Biol Cell 19(9):3934–3943

    PubMed  CAS  Google Scholar 

  • DiMauro S, Hirano M, Schon EA (eds) (2006) Mitochondrial medicine. Informa Healthcare, London

    Google Scholar 

  • Dudkina NV, Eubel H, Keegstra W, Boekema EJ, Braun HP (2005) Structure of a mitochondrial supercomplex formed by respiratory-chain complexes I and III. Proc Natl Acad Sci USA 102(9):3225–3229

    PubMed  CAS  Google Scholar 

  • Dudkina NV, Sunderhaus S, Braun HP, Boekema EJ (2006) Characterization of dimeric ATP synthase and cristae membrane ultrastructure from Saccharomyces and Polytomella mitochondria. FEBS Lett 580(14):3427–3432

    PubMed  CAS  Google Scholar 

  • Dudkina NV, Kudryashev M, Stahlberg H, Boekema EJ (2011) Interaction of complexes I, III, and IV within the bovine respirasome by single particle cryoelectron tomography. Proc Natl Acad Sci USA 108(37):15196–15200

    PubMed  CAS  Google Scholar 

  • Eubel H, Heinemeyer J, Sunderhaus S, Braun HP (2004) Respiratory chain supercomplexes in plant mitochondria. Plant Physiol Biochem 42:937–942

    PubMed  CAS  Google Scholar 

  • Fleischer S, Brierley G, Klouwen H, Slautterback DB (1962) Studies of the electron transfer system. 47. The role of phospholipids in electron transfer. J Biol Chem 237:3264–3272

    PubMed  CAS  Google Scholar 

  • Fontaine E, Bernardi P (1999) Progress on the mitochondrial permeability transition pore: regulation by complex I and ubiquinone analogs. J Bioenerg Biomembr 31(4):335–345

    PubMed  CAS  Google Scholar 

  • Frenzel M, Rommelspacherr H, Sugawa MD, Dencher NA (2010) Ageing alters the supramolecular architecture of OxPhos complexes in rat brain cortex. Exp Gerontol 45:563–572

    PubMed  CAS  Google Scholar 

  • Frezza C, Gottlieb E (2009) Mitochondria in cancer: not just innocent bystanders. Semin Cancer Biol 19(1):4–11

    PubMed  CAS  Google Scholar 

  • Fry M, Green DE (1980) Cardiolipin requirement by cytochrome oxidase and the catalytic role of phospholipid. Biochem Biophys Res Commun 93:1238–1246

    PubMed  CAS  Google Scholar 

  • Fry M, Green DE (1981) Cardiolipin requirement for electron transfer in complex I and III of the mitochondrial respiratory chain. J Biol Chem 256:1874–1880

    PubMed  CAS  Google Scholar 

  • García-Palmer FJ (2008) Lack of functional assembly in mitochondrial supercomplexes: a new insight into impaired mitochondrial function? Cardiovasc Res 80:3–4

    PubMed  Google Scholar 

  • Gavin AC, Superti-Furga G (2003) Protein complexes and proteome organization from yeast to man. Curr Opin Chem Biol 7:21–27

    PubMed  CAS  Google Scholar 

  • Genova ML, Baracca A, Biondi A, Casalena G, Faccioli M, Falasca AI, Formiggini G, Sgarbi G, Solaini G, Lenaz G (2008) Is supercomplex organization of the respiratory chain required for optimal electron transfer activity? Biochim Biophys Acta 1777:740–746

    PubMed  CAS  Google Scholar 

  • Gil T, Sabra MC, Ipsen JH, Mouritsen OG (1997) Wetting and capillary condensation as means of protein organization in membranes. Biophys J 73:1728–1741

    PubMed  CAS  Google Scholar 

  • Gil T, Ipsen JH, Mouritsen OG, Sabra MC, Sperotto MM, Zuckermann MJ (1998) Theoretical analysis of protein organization in lipid membranes. Biochim Biophys Acta 1376:245–266

    PubMed  CAS  Google Scholar 

  • Gómez LA, Monette JS, Chavez JD, Maier CS, Hagen TM (2009) Supercomplexes of the mitochondrial electron transport chain decline in the aging rat heart. Arch Biochem Biophys 490:30–35

    PubMed  Google Scholar 

  • Grad LI, Lamire D (2006) Riboflavin enhances the assembly of mitochondrial cytochrome c oxidase in C. elegans NADH ubiquinone reductase mutants. Biochim Biophys Acta 1757:115–122

    PubMed  CAS  Google Scholar 

  • Grad LI, Lemire D (2004) Mitochondrial complex I mutations in Caenorhabditis elegans produce cytochrome c oxidase deficiency, oxidative stress and vitamin-response lactic acidosis. Hum Mol Genet 13:303–314

    PubMed  CAS  Google Scholar 

  • Hackenbrock CR, Chazotte B, Gupte SS (1986) The random collision model and a critical assessment of diffusion and collision in mitochondrial electron transport. J Bioenerg Biomembr 18:331–368

    PubMed  CAS  Google Scholar 

  • Hashimoto T, Hussien R, Cho H-S, Kaufer D, Brooks GA (2008) Evidence for the mitochondrial lactate oxidation complex in rat neurons: demonstration of an essential component of brain lactate shuttles. PLoS One 3:e2915

    PubMed  Google Scholar 

  • Hatefi Y, Haavik AG, Griffiths DE (1962) Studies on the electron transfer system. XL. Preparation and properties of mitochondrial DPNH-coenzyme Q reductase. J Biol Chem 237:1676–1680

    PubMed  CAS  Google Scholar 

  • Hattori M, Fujiyama A, Taylor TD et al (2000) Chromosome 21 mapping and sequencing consortium. The DNA sequence of human chromosome 21. Nature 405:311–319

    PubMed  CAS  Google Scholar 

  • Hayflick L (2003) Living forever and dying in the attempt. Exp Gerontol 38:1231–1241

    PubMed  Google Scholar 

  • He L, Lemasters JJ (2005) Dephosphorylation of the Rieske iron-sulfur protein after induction of the mitochondrial permeability transition. Biochem Biophys Res Commun 334(3):829–837

    PubMed  CAS  Google Scholar 

  • Heinemeyer J, Braun HP, Boekema EJ, Kouril R (2007) A structural model of the cytochrome C reductase/oxidase supercomplex from yeast mitochondria. J Biol Chem 282(16):12240–12248

    PubMed  CAS  Google Scholar 

  • Helling S, Vogt S, Rhiel A, Ramzan R, Wen L, Marcus K et al (2008) Phosphorylation and kinetics of mammalian cytochrome c oxidase. Mol Cell Proteomics 7:1714–1724

    PubMed  CAS  Google Scholar 

  • Helms V (2002) Attraction within the membrane. EMBO Rep 3:1133–1138

    PubMed  CAS  Google Scholar 

  • Heron C, Ragan CI, Trumpower BL (1978) The interaction between mitochondrial NADH-ubiquinone oxidoreductase and ubiquinol-cytochrome c oxidoreductase – restoration of ubiquinone-pool behaviour. Biochem J 174:791–800

    PubMed  CAS  Google Scholar 

  • Hesketh TR, Smith GA, Houslay MD, McGill KA, Birdsall NJ, Metcalfe JC et al (1976) Annular lipids determine ATPase activity of a calcium transport protein complexes with dipalmitoyllecithin. Biochemistry 15:4145–4151

    PubMed  CAS  Google Scholar 

  • Hildebrandt TM (2011) Modulation of sulfide oxidation and toxicity in rat mitochondria by dehydroascorbic acid. Biochim Biophys Acta 1807(9):1206–1213

    PubMed  CAS  Google Scholar 

  • Hochman J, Ferguson-Miller S, Schindler M (1985) Mobility in the mitochondrial electron transport chain. Biochemistry 24:2509–2516

    PubMed  CAS  Google Scholar 

  • Horbinski C, Chu CT (2005) Kinase signaling cascades in the mitochondrion: a matter of life and death. Free Radic Biol Med 38:2–11

    PubMed  CAS  Google Scholar 

  • Houtkooper RH, Vaz FM (2008) Cardiolipin, the heart of mitochondrial metabolism. Cell Mol Life Sci 65:2493–2506

    PubMed  CAS  Google Scholar 

  • Iqbal K, Grundke-Iqbal I (1996) Molecular mechanism of Alzheimer’s neurofibrillary degeneration and therapeutic intervention. Ann N Y Acad Sci 777:132–138

    PubMed  CAS  Google Scholar 

  • Jacobson K, Sheets ED, Simson R (1995) Revisiting the fluid mosaic model of membranes. Science 268:1441–1442

    PubMed  CAS  Google Scholar 

  • Jost P, Griffith OH, Capaldi RA, Vanderkooi G (1973) Evidence for boundary lipids in membranes. Proc Natl Acad Sci USA 70:480–484

    PubMed  CAS  Google Scholar 

  • Kaluz S, Kaluzova M, Stanbridge EJ (2008) Rational design of minimal hypoxia-inducible enhancers. Biochem Biophys Res Commun 370(4):613–618

    PubMed  CAS  Google Scholar 

  • Kang SY, Gutowsky HS, Hsung JC, Jacobs R, King TE, Rice D et al (1979) Nuclear magnetic resonance investigation of the cytochrome oxidase—phospholipid interaction: a new model for boundary lipid. Biochemistry 18:3257–3267

    PubMed  CAS  Google Scholar 

  • Kholodenko NB, Westerhoff HV (1993) Metabolic channelling and control of the flux. FEBS Lett 320:71–74

    PubMed  CAS  Google Scholar 

  • Kim JW, Tchernyshyov I, Semenza GL, Dang CV (2006) HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia. Cell Metab 3(3):177–185

    PubMed  Google Scholar 

  • King A, Selak MA, Gottlieb E (2006) Succinate dehydrogenase and fumarate hydratase: linking mitochondrial dysfunction and cancer. Oncogene 25(34):4675–4682

    PubMed  CAS  Google Scholar 

  • Kitazoe Y, Kishino H, Hasegawa M, Matsui A, Lane N, Tanaka M (2011) Stability of mitochondrial membrane proteins in terrestrial vertebrates predicts aerobic capacity and longevity. Genome Biol Evol 3:1233–1244

    PubMed  CAS  Google Scholar 

  • Klaunig JE, Kamendulis LM (2004) The role of oxidative stress in carcinogenesis. Annu Rev Pharmacol Toxicol 44:239–267

    PubMed  CAS  Google Scholar 

  • Koopman WJ, Verkaart S, Visch HJ, van Emst-de Vries S, Nijtmans LG, Smeitink JA, Willems PH (2007) Human NADH:ubiquinone oxidoreductase deficiency: radical changes in mitochondrial morphology? Am J Physiol Cell Physiol 293(1):C22–C29

    PubMed  CAS  Google Scholar 

  • Krause F (2006) Detection and analysis of protein-protein interactions in organellar and prokaryotic proteomes by native gel electrophoresis: (membrane) protein complexes and supercomplexes. Electrophoresis 27:2759–2781

    PubMed  CAS  Google Scholar 

  • Krause F, Seelert H (2008) Detection and analysis of protein-protein interactions of organellar and prokaryotic proteomes by blue native and colorless native gel electrophoresis. Curr Protoc Protein Sci Chapter 14:Unit 14.11

    Google Scholar 

  • Krause F, Scheckhuber CQ, Werner A, Rexroth S, Reifschneider NH, Dencher NA, Osiewacz HD (2004a) Supramolecular organization of cytochrome c oxidase- and alternative oxidase-dependent respiratory chains in the filamentous fungus Podospora anserina. J Biol Chem 279:26453–26461

    PubMed  CAS  Google Scholar 

  • Krause F, Reifschneider NH, Vocke D, Seelert H, Rexroth S, Dencher NA (2004b) “Respirasome”-like supercomplexes in green leaf mitochondria of spinach. J Biol Chem 279:48369–48375

    PubMed  CAS  Google Scholar 

  • Krause F, Reifschneider NH, Goto S, Dencher NA (2005) Active oligomeric ATP synthases in mammalian mitochondria. Biochem Biophys Res Commun 329(2):583–590

    PubMed  CAS  Google Scholar 

  • Krause F, Scheckhuber CQ, Werner A, Rexroth S, Reifschneider NH, Dencher NA, Osiewacz HD (2006) OXPHOS Supercomplexes: respiration and life-span control in the aging model Podospora anserina. Ann N Y Acad Sci 1067:106–115

    PubMed  CAS  Google Scholar 

  • Kröger A, Klingenberg M (1973a) The kinetics of the redox reactions of ubiquinone related to the electron-transport activity in the respiratory chain. Eur J Biochem 34:358–368

    PubMed  Google Scholar 

  • Kröger A, Klingenberg M (1973b) Further evidence of the pool function of ubiquinone as derived from the inhibition of the electron transport by antimycin. Eur J Biochem 39:313–323

    PubMed  Google Scholar 

  • Lange C, Nett JH, Trumpower BL, Hunte C (2001) Specific roles of protein-phospholipid interactions in the yeast cytochrome bc1 complex structure. EMBO J 20:6591–6600

    PubMed  CAS  Google Scholar 

  • Le Pécheur M, Morrow G, Kim H.-J, Schäfer E, Dencher N, Tanguay RM (2009) Characterization of OXPHOS complexes in long-lived flies overexpressing Hsp22. Mitochondria in ageing and age-related disease, MiMage final meeting (and LINK-AGE Topic Research) Group Meeting, abstract 16, p 35

    Google Scholar 

  • Lee AG (2004) How lipids affect the activities of integral membrane proteins. Biochim Biophys Acta 1666:62–87

    PubMed  CAS  Google Scholar 

  • Lee I, Salomon AR, Ficarro S, Mathes I, Lottspeich F, Grossman LI et al (2005) cAMP-dependent tyrosine phosphorylation of subunit I inhibits cytochrome c oxidase activity. J Biol Chem 280:6094–6100

    PubMed  CAS  Google Scholar 

  • Lenaz G (1998) Role of mitochondria in oxidative stress and ageing. Biochim Biophys Acta 1366:53–67

    PubMed  CAS  Google Scholar 

  • Lenaz G, Genova ML (2007) Kinetics of integrated electron transfer in the mitochondrial respiratory chain: random collisions vs. solid state electron channeling. Am J Physiol Cell Physiol 292:C1221–C1239

    PubMed  CAS  Google Scholar 

  • Lenaz G, Genova ML (2009) Mobility and function of coenzyme Q (ubiquinone) in the mitochondrial respiratory chain. Biochim Biophys Acta 1787(6):563–573

    PubMed  CAS  Google Scholar 

  • Lenaz G, Genova ML (2010) Structure and organization of mitochondrial respiratory complexes: a new understanding of an old subject. Antioxid Redox Signal 12:961–1008

    PubMed  CAS  Google Scholar 

  • Lenaz G, Strocchi P (2009) Reactive oxygen species in the induction of toxicity, Chapter 15. In: Ballantyne B, Marrs T, Syversen T (eds) General and applied toxicology. Wiley, Chichester

    Google Scholar 

  • Lenaz G, Fato R, Di Bernardo S, Jarreta D, Costa A, Genova ML et al (1999) Localization and mobility of coenzyme Q in lipid bilayers and membranes. Biofactors 9:87–93

    PubMed  CAS  Google Scholar 

  • Lenaz G, D’Aurelio M, Merlo Pich M, Genova ML, Ventura B, Bovina C, Formaggini G, Parenti Castelli G (2000) Mitochondrial bioenergetics in aging. Biochim Biophys Acta 1459:397–404

    PubMed  CAS  Google Scholar 

  • Lenaz G, Baracca A, Fato R, Genova ML, Solaini G (2006) New insights into structure and function of mitochondria and their role in ageing and disease. Antioxid Redox Signal 8:417–437

    PubMed  CAS  Google Scholar 

  • Lenaz G, Baracca A, Barbero G, Bergamini C, Dalmonte ME, Del Sole M, Faccioli M, Falasca A, Fato R, Genova ML, Sgarbi G, Solaini G (2010) Mitochondrial respiratory chain super-complex I-III in physiology and pathology. Biochim Biophys Acta 1797(6–7):633–640

    PubMed  CAS  Google Scholar 

  • Leys D, Basran J, Talfournier F, Sutcliffe MJ, Scrutton NS (2003) Extensive conformational sampling in a ternary electron transfer complex. Nat Struct Biol 10:219–225

    PubMed  CAS  Google Scholar 

  • Linnane AW, Marzuki S, Ozawa T, Tanaka M (1989) Mitochondrial DNA mutations as an important contributor to ageing and degenerative diseases. Lancet 1:642–645

    PubMed  CAS  Google Scholar 

  • Lombardi A, Silvestri E, Cioffi F, Senese R, Lanni A, Goglia F, de Lange P, Moreno M (2009) Defining the transcriptomic and proteomic profiles of rat ageing skeletal muscle by the use of a cDNA array, 2D- and Blue native-PAGE approach. J Proteomics 72:708–721

    PubMed  CAS  Google Scholar 

  • Lu H, Dalgard CL, Mohyeldin A, McFate T, Tait AS, Verma A (2005) Reversible inactivation of HIF-1 prolyl hydroxylases allows cell metabolism to control basal HIF-1. J Biol Chem 280(51):41928–41939

    PubMed  CAS  Google Scholar 

  • Maas MF, Krause F, Dencher NA, Sainsard-Chanet A (2009) Respiratory complexes III and IV are not essential for the assembly/stability of complex I in fungi. J Mol Biol 387:259–269

    PubMed  CAS  Google Scholar 

  • Maj MC, Raha S, Myint T, Robinson BH (2004) Regulation of NADH/CoQ oxidoreductase: do phosphorylation events affect activity? Protein J 23:25–32

    PubMed  CAS  Google Scholar 

  • Mannella CA (2006) The relevance of mitochondrial membrane topology to mitochondrial function. Biochim Biophys Acta 1762:140–147

    PubMed  CAS  Google Scholar 

  • Marques I, Dencher NA, Videira A, Krause F (2007) Supramolecular organization of the respiratory chain in Neurospora crassa mitochondria. Eukaryot Cell 6(12):2391–2405

    PubMed  CAS  Google Scholar 

  • McFate T, Mohyeldin A, Lu H, Thakar J, Henriques J, Halim ND, Wu H, Schell MJ, Tsang TM, Teahan O, Zhou S, Califano JA, Jeoung NH, Harris RA, Verma A (2008) Pyruvate dehydrogenase complex activity controls metabolic and malignant phenotype in cancer cells. J Biol Chem 283(33):22700–22708

    PubMed  CAS  Google Scholar 

  • McKenzie M, Lazarou M, Thorburn DR, Ryan MT (2006) Mitochondrial respiratory chain supercomplexes are destabilized in Barth Syndrome patients. J Mol Biol 361(3):462–469

    PubMed  CAS  Google Scholar 

  • Megli FM, Sabatini K (2003) EPR studies of phospholipid bilayers after lipoperoxidation. 1. Inner molecular order and fluidity gradient. Chem Phys Lipids 125:161–172

    PubMed  CAS  Google Scholar 

  • Mick DU, Wagner K, van der Laan M, Frazier AE, Perschil I, Pawlas M, Meyer HE, Warscheid B, Rehling P (2007) Shy1 couples Cox1 translational regulation to cytochrome c oxidase assembly. EMBO J 26(20):4347–4358

    PubMed  CAS  Google Scholar 

  • Moran M, Rivera H, Sanchez-Arago M, Blazquez A, Merinero B, Ugalde C, Arenas J, Cuezva JM, Martin MA (2010) Mitochondrial bioenergetics and dynamics interplay in complex I-deficient fibroblasts. Biochim Biophys Acta 1802(5):443–453

    PubMed  CAS  Google Scholar 

  • Moser CC, Page CC, Dutton PL (2005) Tunneling in PSII. Photochem Photobiol Sci 4:933–939

    PubMed  CAS  Google Scholar 

  • Muster B, Kohl W, Wittig I, Strecker V, Joos F, Haase W, Bereiter-Hahn J, Busch K (2010) Respiratory chain complexes in dynamic mitochondria display a patchy distribution in life cells. PLoS One 5(7):e11910

    PubMed  Google Scholar 

  • Neuwald AF (1997) Barth syndrome may be due to an acyltransferase deficiency. Curr Biol 7:R465–R466

    PubMed  CAS  Google Scholar 

  • Nübel E, Wittig I, Kerscher S, Brandt U, Schägger H (2009) Two-dimensional native electrophoretic analysis of respiratory supercomplexes from Yarrowia lipolytica. Proteomics 9(9):2408–2418

    PubMed  Google Scholar 

  • O’Toole JF, Patel HV, Naples CJ, Fujioka H, Hopple CL (2010) Decreased cytochrome c mediates an age-related decline of oxidative phosphorylation in rat kidney mitochondria. Biochem J 427:105–112

    PubMed  Google Scholar 

  • Ohya S, Kuwata Y, Sakamoto K, Muraki K, Imaizumi Y (2005) Cardioprotective effects of estradiol include the activation of large-conductance Ca2+-activated K+ channels in cardiac mitochondria. Am J Physiol Heart Circ Physiol 289:H1635–H1642

    PubMed  CAS  Google Scholar 

  • Osenbroch PØ, Auk-Emblem P, Halsne R, Strand J, Forstrøm RJ, van der Pluijm I, Eide L (2009) Accumulation of mitochondrial DNA damage and bioenergetic dysfunction in CSB defective cells. FEBS J 276:2811–2821

    PubMed  CAS  Google Scholar 

  • Ovàdi J (1991) Physiological significance of metabolic channelling. J Theor Biol 152:135–141

    PubMed  Google Scholar 

  • Ovàdi J, Huang Y, Spivey HO (1994) Binding of malate dehydrogenase and NADH channelling to complex I. J Mol Recognit 7:265–272

    PubMed  Google Scholar 

  • Ozawa T (1997) Genetic and functional changes in mitochondria associated with aging. Physiol Rev 77:425–464

    PubMed  CAS  Google Scholar 

  • Ozawa T, Nishikimi M, Suzuki H, Tanaka M, Shimomura Y (1987) Structure and assembly of mitochondrial electron-transfer complexes. In: Ozawa T, Papa S (eds) Bioenergetics: structure and function of energy-transducing systems. Japan Science Society Press, Tokyo, pp 101–119

    Google Scholar 

  • Page CC, Moser CC, Dutton PL (2003) Mechanism for electron transfer within and between proteins. Curr Opin Chem Biol 7:551–556

    PubMed  CAS  Google Scholar 

  • Panov A, Dikalov S, Shalbuyeva N, Hemendinger R, Greenamyre JT, Rosenfeld J (2007) Species- and tissue-specific relationships between mitochondrial permeability transition and generation of ROS in brain and liver mitochondria of rats and mice. Am J Physiol Cell Physiol 292:C708–C718

    PubMed  CAS  Google Scholar 

  • Papa S, De Rasmo D, Scacco S, Signorile A, Technikova-Dobrova Z, Palmisano G et al (2008) Mammalian complex I: a regulable and vulnerable pacemaker in mitochondrial respiratory function. Biochim Biophys Acta 1777:719–728

    PubMed  CAS  Google Scholar 

  • Paradies G, Petrosillo G, Pistolese M, Ruggiero FM (2000) The effect of reactive oxygen species generated from the mitochondrial electron transport chain on the cytochrome c oxidase activity and on the cardiolipin content in bovine heart submitochondrial particles. FEBS Lett 466:323–326

    PubMed  CAS  Google Scholar 

  • Paradies G, Petrosillo G, Pistolese M, Ruggiero FM (2002) Reactive oxygen species affect mitochondrial electron transport complex I activity through oxidative cardiolipin damage. Gene 286:135–141

    PubMed  CAS  Google Scholar 

  • Park JS, Sharma LK, Li H, Xiang R, Holstein D, Wu J, Lechleiter J, Naylor SL, Deng JJ, Lu J, Bai Y (2009) A heteroplasmic, not homoplasmic, mitochondrial DNA mutation promotes tumorigenesis via alteration in reactive oxygen species generation and apoptosis. Hum Mol Genet 18(9):1578–1589

    PubMed  CAS  Google Scholar 

  • Patten DA, Lafleur VN, Robitaille GA, Chan DA, Giaccia AJ, Richard DE (2010) Hypoxia-inducible factor-1 activation in nonhypoxic conditions: the essential role of mitochondrial-derived reactive oxygen species. Mol Biol Cell 21(18):3247–3257

    PubMed  CAS  Google Scholar 

  • Persichini T, Mazzone V, Polticelli F, Moreno S, Venturini G, Clementi E, Colasanti M (2005) Mitochondrial type I nitric oxide synthase physically interacts with cytochrome c oxidase. Neurosci Lett 384:254–259

    PubMed  CAS  Google Scholar 

  • Petrosillo G, Ruggiero FM, Di Venosa N, Paradies G (2003) Decreased complex III activity in mitochondria isolated from rat heart subjected to ischemia and reperfusion: role of reactive oxygen species and cardiolipin. FASEB J 17:714–716

    PubMed  CAS  Google Scholar 

  • Pfeiffer K, Gohil V, Stuart RA, Hunte C, Brandt U, Greenberg ML et al (2003) Cardiolipin stabilizes respiratory chain supercomplexes. J Biol Chem 278:52873–52880

    PubMed  CAS  Google Scholar 

  • Piccoli C, Scrima R, Boffoli D, Capitanio N (2006) Control by cytochrome c oxidase of the cellular oxidative phosphorylation system depends on the mitochondrial energy state. Biochem J 396:573–583

    PubMed  CAS  Google Scholar 

  • Pineau B, Mathieu C, Gérard-Hirne C, De Paepe R, Chétrit P (2005) Targeting the NAD7 subunit in mitochondria restores a functional complex I and a wild type phenotype in the Nicotiana sylvestris CMS II mutant lacking nad7. J Biol Chem 280(28):25994–26001

    PubMed  CAS  Google Scholar 

  • Porcelli AM, Ghelli A, Ceccarelli C, Lang M, Cenacchi G, Capristo M, Pennisi LF, Morra I, Ciccarelli E, Melcarne A, Bartoletti-Stella A, Salfi N, Tallini G, Martinuzzi A, Carelli V, Attimonelli M, Rugolo M, Romeo G, Gasparre G (2010) The genetic and metabolic signature of oncocytic transformation implicates HIF1alpha destabilization. Hum Mol Genet 19(6):1019–1032

    PubMed  CAS  Google Scholar 

  • Radermacher M, Ruiz T, Clason T, Benjamin S, Brandt U, Zickermann V (2006) The three-dimensional structure of complex I from Yarrowia lipolytica: a highly dynamic enzyme. J Struct Biol 154:269–279

    PubMed  CAS  Google Scholar 

  • Ragan CI, Heron C (1978) The interaction between mitochondrial NADH-ubiquinone oxidoreductase and ubiquinol-cytochrome c oxidoreductase – evidence for stoicheiometric association. Biochem J 174:783–790

    PubMed  CAS  Google Scholar 

  • Raha S, Myint AT, Johnstone L, Robinson BH (2002) Control of oxygen free radical formation from mitochondrial complex I: roles for protein kinase A and pyruvate dehydrogenase kinase. Free Radic Biol Med 32:421–430

    PubMed  CAS  Google Scholar 

  • Reddy PH, Manczak M, Mao P, Calkins MJ, Reddy AP, Shirendeb U (2010) Amyloid-beta and mitochondria in aging and Alzheimer’s disease: implications for synaptic damage and cognitive decline. J Alzheimers Dis 20(Suppl 2):S499–S512

    PubMed  Google Scholar 

  • Reifschneider NH, Goto S, Nakamoto H, Takahashi R, Sugawa M, Dencher NA, Krause F (2006) Defining the mitochondrial proteomes from five rat organs in a physiologically significant context using 2D blue-native/SDS–PAGE. J Proteome Res 5:1117–1132

    PubMed  CAS  Google Scholar 

  • Ricchelli F, Sileikytė J, Bernardi P (2011) Shedding light on the mitochondrial permeability transition. Biochim Biophys Acta 1807(5):482–490

    PubMed  CAS  Google Scholar 

  • Rieske JS (1967) Preparation and properties of reduced coenzyme Q-cytochrome c reductase (complex III of the respiratory chain). Methods Enzymol 10:239–245

    CAS  Google Scholar 

  • Robinson NC, Strey F, Talbert L (1980) Investigation of the essential boundary layer phospholipids of cytochrome c oxidase using Triton X-100 delipidation. Biochemistry 19:3656–3661

    PubMed  CAS  Google Scholar 

  • Rosca MG, Hoppel CL (2010) Mitochondria in heart failure. Cardiovasc Res 88:40–50

    PubMed  CAS  Google Scholar 

  • Rosca MG, Vazquez EJ, Kerner J, Parland W, Chandler MP, Stanley W, Sabbah HN, Hoppel CL (2008) Cardiac mitochondria in heart failure: decrease in respirasomes and oxidative phosphorylation. Cardiovasc Res 80:30–39

    PubMed  CAS  Google Scholar 

  • Rosca M, Minkler P, Hoppel CL (2011) Cardiac mitochondria in heart failure: normal cardiolipin profile and increased threonine phosphorylation of complex IV. Biochim Biophys Acta 1807(11):1373–1382

    PubMed  CAS  Google Scholar 

  • Ryan MT, Hoogenraad NJ (2007) Mitochondrial-nuclear communications. Annu Rev Biochem 76:701–722

    PubMed  CAS  Google Scholar 

  • Saffman PG, Delbruck M (1975) Brownian motion in biological membranes. Proc Natl Acad Sci USA 72:3111–3113

    PubMed  CAS  Google Scholar 

  • Salvi M, Brunati AM, Toninello A (2005) Tyrosine phosphorylation in mitochondria: a new frontier in mitochondrial signaling. Free Radic Biol Med 38:1267–1277

    PubMed  CAS  Google Scholar 

  • Scacco S, Petruzzella V, Bertini E, Luso A, Papa F, Bellomo F et al (2006) Mutations in structural genes of complex I associated with neurological diseases. Ital J Biochem 55:254–262

    PubMed  CAS  Google Scholar 

  • Schäfer E, Seelert H, Reifschneider NH, Krause F, Dencher NA, Vonck J (2006) Architecture of active mammalian respiratory chain supercomplexes. J Biol Chem 281(22): 15370–15375

    PubMed  Google Scholar 

  • Schäfer ER, Cellerino A, Englert C, Frenzel M, Terzibasi E, Dencher NA (2007a) Partial mitochondrial proteome and supramolecular organisation of OXPHOS complexes in the short-lived fish Nothobranchius furzeri. Ann Conf German Genetic Soc abstract 43:38

    Google Scholar 

  • Schäfer E, Dencher NA, Vonck J, Parcej DN (2007b) Three-dimensional structure of the respiratory chain supercomplex I1III2IV1 from bovine heart mitochondria. Biochemistry 46(44):12579–12585

    PubMed  Google Scholar 

  • Schägger H (2002) Respiratory chain supercomplexes of mitochondria and bacteria. Biochim Biophys Acta 1555:154–159

    PubMed  Google Scholar 

  • Schägger H, Pfeiffer K (2000) Supercomplexes in the respiratory chains of yeast and mammalian mitochondria. EMBO J 19:1777–1783

    PubMed  Google Scholar 

  • Schägger H, Pfeiffer K (2001) The ratio of oxidative phosphorylation complexes I-V in bovine heart mitochondria and the composition of respiratory chain supercomplexes. J Biol Chem 276:37861–37867

    PubMed  Google Scholar 

  • Schägger H, von Jagow G (1991) Blue native electrophoresis for isolation of membrane protein complexes in enzymatically active form. Anal Biochem 199(2):223–231

    PubMed  Google Scholar 

  • Schägger H, de Coo R, Bauer MF, Hofmann S, Godinot C, Brandt U (2004) Significance of respirasomes for the assembly/stability of human respiratory chain complex I. J Biol Chem 279:36349–36353

    PubMed  Google Scholar 

  • Schönfeld P, Wieckowski MR, Lebiedzińska M, Wojtczak L (2010) Mitochondrial fatty acid oxidation and oxidative stress: lack of reverse electron transfer-associated production of reactive oxygen species. Biochim Biophys Acta 1797(6–7):929–938

    PubMed  Google Scholar 

  • Schwerzmann K, Cruz-Orive LM, Eggman R, Sänger A, Weibel ER (1986) Molecular architecture of the inner membrane of mitochondria from rat liver: a combined biochemical and stereological study. J Cell Biol 102:97–103

    PubMed  CAS  Google Scholar 

  • Sedlak E, Robinson NC (1999) Phospholipase A(2) digestion of cardiolipin bound to bovine cytochrome c oxidase alters both activity and quaternary structure. Biochemistry 38:14966–14972

    PubMed  CAS  Google Scholar 

  • Seelert H, Dani DN, Dante S, Hauss T, Krause F, Schäfer E, Frenzel M, Poetsch A, Rexroth S, Schwassmann HJ, Suhai T, Vonck J, Dencher NA (2009) From protons to OXPHOS supercomplexes and Alzheimer’s disease: structure-dynamics-function relationships of energy-transducing membranes. Biochim Biophys Acta 1787:657–671

    PubMed  CAS  Google Scholar 

  • Semenza GL (2003) Targeting HIF-1 for cancer therapy. Nat Rev Cancer 3(10):721–732

    PubMed  CAS  Google Scholar 

  • Semenza GL (2007) Oxygen-dependent regulation of mitochondrial respiration by hypoxia-inducible factor 1. Biochem J 405(1):1–9

    PubMed  CAS  Google Scholar 

  • Singer SJ, Nicolson GL (1972) The fluid mosaic model of the structure of cell membranes. Science 175(23):720–731

    PubMed  CAS  Google Scholar 

  • Stark G (2005) Functional consequences of oxidative membrane damage. J Membr Biol 205:1–16

    PubMed  CAS  Google Scholar 

  • Stroh A, Anderka O, Pfeiffer K, Yagi T, Finel M, Ludwig B, Schägger H (2004) Assembly of respiratory complexes I, III, and IV into NADH oxidase supercomplex stabilizes complex I in Paracoccus denitrificans. J Biol Chem 279:5000–5007

    PubMed  CAS  Google Scholar 

  • Stuart RA (2009) Supercomplex organization of the yeast respiratory chain complexes and the ADP/ATP carrier proteins. Methods Enzymol 456:191–208

    PubMed  CAS  Google Scholar 

  • Sumegi B, Srere PA (1984) Complex I binds several mitochondrial NAD-coupled dehydrogenases. J Biol Chem 259:15040–15045

    PubMed  CAS  Google Scholar 

  • Sun W, Zhou S, Chang SS, McFate T, Verma A, Califano JA (2009) Mitochondrial mutations contribute to HIF1alpha accumulation via increased reactive oxygen species and up-regulated pyruvate dehydrogenease kinase 2 in head and neck squamous cell carcinoma. Clin Cancer Res 15(2):476–484

    PubMed  CAS  Google Scholar 

  • Sunderhaus S, Dudkina NV, Jänsch L, Klodmann J, Heinemeyer J, Perales M, Zabaleta E, Boekema EJ, Braun HP (2006) Carbonic anhydrase subunits form a matrix-exposed domain attached to the membrane arm of mitochondrial complex I in plants. J Biol Chem 281(10):6482–6488

    PubMed  CAS  Google Scholar 

  • Suthammarak W, Yang YY, Morgan PG, Sedensky MM (2009) Complex I function is defective in complex IV-deficient Caenorhabditis elegans. J Biol Chem 284(10):6425–6435

    PubMed  CAS  Google Scholar 

  • Suthammarak W, Morgan PG, Sedensky MM (2010) Mutations in mitochondrial complex III uniquely affect complex I in Caenorhabditis elegans. J Biol Chem 285(52):40724–40731

    PubMed  CAS  Google Scholar 

  • Thomson M (2002) Evidence of undiswcovered cell regulatory mechanisms: phosphoproteins and protein kinases in mitochondria. Cell Mol Life Sci 59:213–219

    PubMed  CAS  Google Scholar 

  • Trifunovic A (2006) Mitochondrial DNA and ageing. Biochim Biophys Acta 1757:611–617

    PubMed  CAS  Google Scholar 

  • Trifunovic A, Larsson NG (2008) Mitochondrial dysfunction as a cause of ageing. J Intern Med 263:167–178

    PubMed  CAS  Google Scholar 

  • Trifunovic A, Wredenberg A, Falkenberg M, Spelbrink JN, Rovio AJ, Bruder CF, Bohlooly YM, Gedlof S, Oldfors A, Wibom R, Jacobs HT, Larsson NG (2004) Premature ageing in mice expressing defective mitochondrial DNA polymerase. Nature 429:357–359

    Google Scholar 

  • Tuppen HA, Hogan VE, He L, Blakely EL, Worgan L, Al-Dosary M, Saretzki G, Alston CL, Morris AA, Clarke M, Jones S, Devlin AM, Mansour S, Chrzanowska-Lightowlers ZM, Thorburn DR, McFarland R, Taylor RW (2010) The p.M292T NDUFS2 mutation causes complex I-deficient Leigh syndrome in multiple families. Brain 133(10):2952–2963

    PubMed  Google Scholar 

  • Ugalde C, Janssen RJ, Van den Heuvel LP, Smeitink JA, Nijtmans LG (2004) Differences in the assembly and stability of complex I and other OXPHOS complexes in inherited complex I deficiency. Hum Mol Genet 13:659–667

    PubMed  CAS  Google Scholar 

  • Van Regenmortel MHV (2004) Reductionism and complexity in molecular biology. Scientists now have the tools to unravel biological and overcome the limitations of reductionism. EMBO Rep 5:1016–1020

    PubMed  Google Scholar 

  • Vanderkooi G (1978) Organization of protein and lipid components in membranes. In: Fleischer S, Hatefi Y, MacLennan D, Tzagoloff A (eds) Molecular biology of membranes. Plenum, New York, pp 25–55

    Google Scholar 

  • Velours J, Dautant A, Salin B, Sagot I, Brèthes D (2009) Mitochondrial F1F0-ATP synthase and organellar internal architecture. Int J Biochem Cell Biol 41(10):1783–1789

    PubMed  CAS  Google Scholar 

  • Ventura B, Genova ML, Bovina C, Formiggini G, Lenaz G (2002) Control of oxidative phosphorylation by complex I in rat liver mitochondria: implications for aging. Biochim Biophys Acta 1553:249–260

    PubMed  CAS  Google Scholar 

  • Vereb G, Szollosi J, Matko J, Nagy P, Farkas T, Vigh L et al (2003) Dynamic, yet structured: the cell membrane three decades after the Singer-Nicolson model. Proc Natl Acad Sci USA 100:8053–8058

    PubMed  CAS  Google Scholar 

  • Vik SB, Capaldi RA (1977) Lipid requirements for cytochrome c oxidase activity. Biochemistry 16:5755–5759

    PubMed  CAS  Google Scholar 

  • Vogt S, Rhiel A, Koch V, Kadenbach B (2007) Regulation of oxidative phosphorylation by inhibition of its enzyme complexes via reversible phosphorylation. Curr Enzym Inhib 3:189–206

    CAS  Google Scholar 

  • Vonck J, Schäfer E (2009) Supramolecular organization of protein complexes in the mitochondrial inner membrane. Biochim Biophys Acta 1793(1):117–124

    PubMed  CAS  Google Scholar 

  • Wallace DC (2005) A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: a dawn for evolutionary medicine. Annu Rev Genet 39:359–407

    PubMed  CAS  Google Scholar 

  • Wang Y, Mohsen Al-W, Mihalik SJ, Goetzman ES, Vockley J (2010) Evidence for physical association of mitochondrial fatty acid oxidation and oxidative phosphorylation complexes. J Biol Chem 285:29834–29841

    PubMed  CAS  Google Scholar 

  • Warburg O (1956) On the origin of cancer cells. Science 123(3191):309–314

    PubMed  CAS  Google Scholar 

  • Wenz T, Hielscher R, Hellwig P, Schägger H, Richers S, Hunte C (2009) Role of phospholipids in respiratory cytochrome bc(1) complex catalysis and supercomplex formation. Biochim Biophys Acta 1787(6):609–616

    PubMed  CAS  Google Scholar 

  • Wernicke C, Hellmann J, Zięba B, Kuter K, Ossowska K, Frenzel M, Dencher NA, Rommelspacher H (2010) 9-Methyl-β-carboline has restorative effects in an animal model of Parkinson’s ­disease. Pharmacol Rep 62:1

    Google Scholar 

  • Wittig I, Schägger H (2009) Supramolecular organization of ATP synthase and respiratory chain in mitochondrial membranes. Biochim Biophys Acta 1787(6):672–680

    PubMed  CAS  Google Scholar 

  • Wittig I, Karas M, Schägger H (2007) High resolution clear native electrophoresis for in-gel functional assays and fluorescence studies of membrane protein complexes. Mol Cell Proteomics 6:1215–1225

    PubMed  CAS  Google Scholar 

  • Wong R, Aponte AM, Steenbergen C, Murphy E (2010) Cardioprotection leads to novel changes in the mitochondrial proteome. Am J Physiol Heart Circ Physiol 298(1):H75–H91

    PubMed  CAS  Google Scholar 

  • Yu A, Yu L, King TE (1974) Soluble cytochrome b-c1 complex and the reconstitution of succinate-cytochrome c reductase. J Biol Chem 249:4905–4910

    PubMed  CAS  Google Scholar 

  • Zhang M, Mileykovskaya E, Dowhan W (2002) Gluing the respiratory chain together. Cardiolipin is required for supercomplex formation in the inner mitochondrial membrane. J Biol Chem 277:43553–43556

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Luisa Genova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Lenaz, G., Genova, M.L. (2012). Supramolecular Organisation of the Mitochondrial Respiratory Chain: A New Challenge for the Mechanism and Control of Oxidative Phosphorylation. In: Kadenbach, B. (eds) Mitochondrial Oxidative Phosphorylation. Advances in Experimental Medicine and Biology, vol 748. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3573-0_5

Download citation

Publish with us

Policies and ethics