Skip to main content

Introduction to Mitochondrial Oxidative Phosphorylation

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((volume 748))

Abstract

The basic mechanism of ATP synthesis in the mitochondria by oxidative phosphorylation (OxPhos) was revealed in the second half of the twentieth century. The OxPhos complexes I–V have been analyzed concerning their subunit composition, genes, and X-ray structures. This book presents new developments regarding the morphology, biogenesis, gene evolution, heat, and reactive oxygen species (ROS) generation in mitochondria, as well as the structure and supercomplex formation of OxPhos complexes. In addition, multiple mitochondrial diseases based on mutations of nuclear-encoded genes have been identified. Little is known, however, of the regulation of OxPhos according to the variable cellular demands of ATP. In particular, the functions of the supernumerary (nuclear-encoded) subunits of mitochondrial OxPhos complexes, which are mostly absent in bacteria, remain largely unknown, although the corresponding and conserved core subunits exhibit the same catalytic activity. Identification of regulatory pathways modulating OxPhos activity, by subunit isoform expression, by allosteric interaction with ATP/ADP, by reversible phosphorylation of protein subunits, or by supercomplex formation, will help to understand the role of mitochondria in the many degenerative diseases, mostly based on ROS formation in mitochondria and/or insufficient energy production.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abrahams JP, Leslie AG, Lutter R, Walker JE (1994) Structure at 2.8 Å resolution of F1-ATPase from bovine heart mitochondria. Nature 370(6491):621–628

    PubMed  CAS  Google Scholar 

  • Anthony G, Stroh A, Lottspeich F, Kadenbach B (1990) Different isozymes of cytochrome c oxidase are expressed in bovine smooth muscle and skeletal or heart muscle. FEBS Lett 277:97–100

    PubMed  CAS  Google Scholar 

  • Arnold S, Kadenbach B (1997) Cell respiration is controlled by ATP, an allosteric inhibitor of cytochrome c oxidase. Eur J Biochem 249:350–354

    PubMed  CAS  Google Scholar 

  • Arnold S, Goglia F, Kadenbach B (1998) 3,5-diiodothyronine binds to subunit Va of cytochrome c oxidase and abolishes the allosteric inhibition of respiration by ATP. Eur J Biochem 252:325–330

    PubMed  CAS  Google Scholar 

  • Bamber L, Harding M, Monne M, Slotboom DJ, Kunji ERS (2007) The yeast mitochondrial ADP/ATP carrier functions as a monomer in mitochondrial membranes. Proc Natl Acad Sci USA 104:10830–10834

    PubMed  CAS  Google Scholar 

  • Bonne G, Seibel P, Possekel S, Marsac C, Kadenbach B (1993) Expression of humen cytochrome c oxidase subunits during fetal development. Eur J Biochem 217:1099–1107

    PubMed  CAS  Google Scholar 

  • Bowler MW, Montgomery MG, Leslie AGW, Walker JE (2007) Ground state structure of F1-ATPase from bovine heart mitochondria at 1.9 Å resolution. J Biol Chem 282:14238–14242

    PubMed  CAS  Google Scholar 

  • Boyer PD, Chance B, Ernster L, Mitchell P, Racker E, Slater EC (1977) Oxidative phosphorylation and photophosphorylation. Annu Rev Biochem 46:955–966

    PubMed  CAS  Google Scholar 

  • Brenner D, Mak TW (2009) Mitochondrial cell death effectors. Curr Opin Cell Biol 21:871–877

    PubMed  CAS  Google Scholar 

  • Buschmann S, Warkentin E, Xie H, Langer JD, Ermler U, Michel H (2010) The structure of cbb3 cytochrome oxidase provides insights into proton pumping. Science 329(5989):327–330

    PubMed  CAS  Google Scholar 

  • Carroll J, Fearnley IM, Wang Q, Walker JE (2009) Measurement of the molecular masses of hydrophilic and hydrophobic subunits of ATP synthase and complex I in a single experiment. Anal Biochem 395:249–255

    PubMed  CAS  Google Scholar 

  • Chen R, Fearnley IM, Peak-Chew SY, Walker JE (2004) The phosphorylation of subunits of complex I from bovine heart mitochondria. J Biol Chem 279:26036–26045

    PubMed  CAS  Google Scholar 

  • Collinson IR, Runswick MJ, Buchanan SK, Fearnley IM, Skehel JM, van Raaij MJ, Griffiths DE, Walker JE (1994) Fo membrane domain of ATP synthase from bovine heart mitochondria: purification, subunit composition, and reconstitution with F1-ATPase. Biochemistry 33: 7971–7978

    PubMed  CAS  Google Scholar 

  • Dalmonte ME, Forte E, Genova ML, Giuffrè A, Sarti P, Lenaz G (2009) Control of respiration by cytochrome c oxidase in intact cells: role of the membrane potential. J Biol Chem 284: 32331–32335

    PubMed  CAS  Google Scholar 

  • Das J, Miller ST, Stern DL (2004) Comparison of diverse protein sequences of the nuclear-encoded subunits of cytochrome c oxidase suggests conservation of structure underlies evolving functional sites. Mol Biol Evol 21:1572–1582

    PubMed  CAS  Google Scholar 

  • De Rasmo D, Panelli D, Sardanelli AM, Papa S (2008) cAMP-dependent protein kinase regulates the mitochondrial import of the nuclear encoded NDUFS4 subunit of complex I. Cell Signal 20:989–997

    PubMed  CAS  Google Scholar 

  • Dickson VK, Silvester JA, Fearnley IM, Leslie AG, Walker JE (2006) On the structure of the stator of the mitochondrial ATP synthase. EMBO J 25:2911–2918

    PubMed  CAS  Google Scholar 

  • DiMauro S, Schon EA (2008) Mitochondrial disorders in the nervous system. Annu Rev Neurosci 31:91–123

    PubMed  CAS  Google Scholar 

  • Efremov RG, Sazanov LA (2011) Structure of the membrane domain of respiratory complex I. Nature 476(7361):414–420

    PubMed  CAS  Google Scholar 

  • Ferguson-Miller S, Hiser C, Liu J (2012) Gating and regulation of the cytochrome c oxidase proton pump. Biochim Biophys Acta 1817:489–494

    Google Scholar 

  • Frank V, Kadenbach B (1996) Regulation of the H+/e–stoichiometry of cytochrome c oxidase from bovine heart by intraliposomal ATP/ADP ratios. FEBS Lett 382:121–124

    PubMed  CAS  Google Scholar 

  • Groen AK, Wanders RJA, Westerhoff HV, van der Meer R, Tager JM (1982) Quantification of the contribution of various steps to the control of mitochondrial respiration. J Biol Chem 257:2754–2757

    PubMed  CAS  Google Scholar 

  • Helling S, Hüttemann H, Ramzan R, Kim SH, Lee I, Müller T, Langenfeld E, Meyer HE, Kadenbach B, Vogt S, Marcus K (2012) Multiple phosphorylations of cytochrome c oxidase and their functions. Proteomics 12:950–959

    Google Scholar 

  • Hunte C, Zickermann V, Brandt U (2010) Functional modules and structural basis of conformational coupling in mitochondrial complex I. Science 329(5990):448–451

    PubMed  CAS  Google Scholar 

  • Hüttemann M, Kadenbach B, Grossman LI (2001) Mammalian subunit IV isoforms of cytochrome c oxidase. Gene 267:111–123

    PubMed  Google Scholar 

  • Hüttemann M, Jaradat S, Grossman LI (2003a) Cytochrome c oxidase of mammals contains a testes-specific isoform of subunit VIb – the counterpart to testes-specific cytochrome c? Mol Reprod Dev 66:8–16

    PubMed  Google Scholar 

  • Hüttemann M, Schmidt TR, Grossman LI (2003b) A third isoform of cytochrome c oxidase subunit VIII is present in mammals. Gene 312:95–102

    PubMed  Google Scholar 

  • Indran IR, Tufo G, Pervaiz S, Brenner C (2011) Recent advances in apoptosis, mitochondria and drug resistance in cancer cells. Biochim Biophys Acta 1807:735–745, Review

    PubMed  CAS  Google Scholar 

  • Inoue Y, Shingyoji C (2007) The roles of noncatalytic ATP binding and ADP binding in the regulation of dynein motile activity in flagella. Cell Motil Cytoskeleton 64:690–704

    PubMed  CAS  Google Scholar 

  • Iwata S, Ostermeier C, Ludwig B, Michel H (1995) Structure at 2.8 Å resolution of cytochrome c oxidase from Paracoccus denitrificans. Nature 376:660–669

    PubMed  CAS  Google Scholar 

  • Iwata S, Lee JW, Okada K, Lee JK, Iwata M, Rasmussen B, Link TA, Ramaswamy S, Jap BK (1998) Complete structure of the 11-subunit bovine mitochondrial cytochrome bc1 complex. Science 281(5373):64–71

    PubMed  CAS  Google Scholar 

  • Jastroch M, Divakaruni AS, Mookerjee S, Treberg JR, Brand MD (2010) Mitochondrial proton and electron leaks. Essays Biochem 47:53–67

    PubMed  CAS  Google Scholar 

  • Kadenbach B, Ramzan R, Wen L, Vogt S (2010) New extension of the Mitchell Theory for oxidative phosphorylation in mitochondria of living organisms. Biochim Biophys Acta 1800: 205–212

    PubMed  CAS  Google Scholar 

  • Klingenberg M (2008) The ADP and ATP transport in mitochondria and its carrier. Biochim Biophys Acta 1778:1978–2021

    PubMed  CAS  Google Scholar 

  • Koepke J, Olkhova E, Angerer H, Müller H, Peng G, Michel H (2009) High resolution crystal structure of Paracoccus denitrificans cytochrome c oxidase: new insights into the active site and the proton transfer pathways. Biochim Biophys Acta 1787:635–645

    PubMed  CAS  Google Scholar 

  • Krishnan KJ, Reeve AK, Samuels DC, Chinnery PF, Blackwood JK, Taylor RW, Wanrooij S, Spelbrink JN, Lightowlers RN, Turnbull DM (2008) What causes mitochondrial DNA deletions in human cells? Nat Genet 40:275–279

    PubMed  CAS  Google Scholar 

  • Kunji ER, Robinson AJ (2010) Coupling of proton and substrate translocation in the transport cycle of mitochondrial carriers. Curr Opin Struct Biol 20:440–447

    PubMed  CAS  Google Scholar 

  • Lee I, Kadenbach B (2001) Palmitate decreases proton pumping of liver-type cytochrome c oxidase. Eur J Biochem 268:6329–6334

    PubMed  CAS  Google Scholar 

  • Lee I, Bender E, Arnold S, Kadenbach B (2001) New control of mitochondrial membrane potential and ROS-formation. Biol Chem 382:1629–1633

    PubMed  CAS  Google Scholar 

  • Lee I, Bender E, Kadenbach B (2002) Control of mitochondrial membrane potential and ROS formation by reversible phosphorylation of cytochrome c oxidase. Mol Cell Biochem 234(235):63–70

    PubMed  Google Scholar 

  • Lee I, Salomon AR, Ficarro S, Mathes I, Lottspeich F, Grossman LI, Hüttemann M (2005) cAMP-dependent tyrosine phosphorylation of subunit I inhibits cytochrome c oxidase activity. J Biol Chem 280:6094–6100

    PubMed  CAS  Google Scholar 

  • Lehninger AL (1970) Biochemistry. Worth Publishers, New York

    Google Scholar 

  • Lill R (2009) Function and biogenesis of iron-sulphur proteins. Nature 460(7257):831–838

    PubMed  CAS  Google Scholar 

  • Linder D, Freund R, Kadenbach B (1995) Species-specific expression of cytochrome c oxidase isozymes. Comp Biochem Physiol 112B:461–469

    CAS  Google Scholar 

  • Linn TC, Pettit FH, Reed LJ (1969) Alpha-keto acid dehydrogenase complexes. X. Regulation of the activity of the pyruvate dehydrogenase complex from beef kidney mitochondria by phosphorylation and dephosphorylation. Proc Natl Acad Sci USA 62:234–241

    PubMed  CAS  Google Scholar 

  • Liu J, Qin L, Ferguson-Miller S (2011) Crystallographic and online spectral evidence for role of conformational change and conserved water in cytochrome oxidase proton pump. Proc Natl Acad Sci USA 108(4):1284–1289

    PubMed  CAS  Google Scholar 

  • Ludwig B, Bender E, Arnold S, Hüttemann M, Lee I, Kadenbach B (2001) Cytochrome c oxidase and the regulation of oxidative phosphorylation. Chembiochem 2:392–403

    PubMed  CAS  Google Scholar 

  • Margulis L (1975) Symbiotic theory of the origin of eukaryotic organelles; criteria for proof. Symp Soc Exp Biol 29:21–38

    PubMed  Google Scholar 

  • Martinou JC, Youle RJ (2011) Mitochondria in apoptosis: Bcl-2 family members and mitochondrial dynamics. Dev Cell 21:92–101

    PubMed  CAS  Google Scholar 

  • McKenzie M, Lazarou M, Ryan MT (2009) Analysis of respiratory chain complex assembly with radiolabeled nuclear- and mitochondrial-encoded subunits. Methods Enzymol 456:321–339

    PubMed  CAS  Google Scholar 

  • Mitchell P (1961) Coupling of phosphorylation to electron and hydrogen transfer by a chemiosmotic type of mechanism. Nature 191:144–148

    PubMed  CAS  Google Scholar 

  • Mitchell P (1966) Chemiosmotic coupling in oxidative and photosynthetic phosphorylation. Biol Rev 41:445–502

    PubMed  CAS  Google Scholar 

  • Müller-Höcker J, Schneiderbanger K, Stefani FH, Kadenbach B (1992) Progressive loss of cytochrome-c-oxidase in the human extraocular muscles in ageing—a cytochemical-immunohistochemical study. Mutat Res 275:115–124

    PubMed  Google Scholar 

  • Müller-Höcker J, Seibel P, Schneiderbanger K, Kadenbach B (1993) Different in situ hybridisation patterns of mitochondrial DNA in cytochrome c oxidase- deficient extraocular muscle fibres in the elderly. Virchows Arch A Pathol Anat Histopathol 422:7–15

    PubMed  Google Scholar 

  • Napiwotzki J, Kadenbach B (1998) Extramitochondrial ATP/ADP-ratios regulate cytochrome c oxidase activity via binding to the cytosolic domain of subunit IV. Biol Chem 379:335–339

    PubMed  CAS  Google Scholar 

  • Nyola A, Hunte C (2008) A structural analysis of the transient interaction between the cytochrome bc1 complex and its substrate cytochrome c. Biochem Soc Trans 36:981–985

    PubMed  CAS  Google Scholar 

  • Pacelli C, Latorre D, Cocco T, Capuano F, Kukat C, Seibel P, Villani G (2011) Tight control of mitochondrial membrane potential by cytochrome c oxidase. Mitochondrion 11:334–341

    PubMed  CAS  Google Scholar 

  • Pagliarini DJ, Dixon JE (2006) Mitochondrial modulation: reversible phosphorylation takes center stage? Trends Biochem Sci 31:26–34

    PubMed  CAS  Google Scholar 

  • Palmieri F (2008) Diseases caused by defects of mitochondrial carriers: a review. Biochim Biophys Acta 1777:564–578

    PubMed  CAS  Google Scholar 

  • Palmieri F, Pierri CL (2010) Mitochondrial metabolite transport. Essays Biochem 47:37–52

    PubMed  CAS  Google Scholar 

  • Palmieri F, Pierri CL, De Grassi A, Nunes-Nesi A, Fernie AR (2011) Evolution, structure and function of mitochondrial carriers: a review with new insights. Plant J 66:161–181

    PubMed  CAS  Google Scholar 

  • Parsons WJ, Williams RS, Shelton JM, Luo Y, Kessler DJ, Richardson JA (1996) Developmental regulation of cytochrome oxidase subunit VIa isoforms in cardiac and skeletal muscle. Am J Physiol 270:H567–H574

    PubMed  CAS  Google Scholar 

  • Paumard P, Vaillier J, Coulary B, Schaeffer J, Soubannier V, Mueller DM, Brèthes D, di Rago JP, Velours J (2002) The ATP synthase is involved in generating mitochondrial cristae morphology. EMBO J 21:221–230

    PubMed  CAS  Google Scholar 

  • Pebay-Peyroula E, Dahout-Gonzalez C, Kahn R, Trezeguet V, Lauquin GJ, Brandolin G (2003) Structure of mitochondrial ADP/ATP carrier in complex with carboxyatractyloside. Nature 426:39–44

    PubMed  CAS  Google Scholar 

  • Piccoli C, Scrima R, Boffoli D, Capitanio N (2006) Control by cytochrome c oxidase of the callular oxidative phosphorylation system depends on the mitochondrial energy state. Biochem J 396:573–583

    PubMed  CAS  Google Scholar 

  • Pierron D, Wildman DE, Hüttemann M, Markondapatnaikuni GC, Aras S, Grossman LI (2012) Cytochrome c oxidase: evolution of control via nuclear subunit addition. Biochim Biophys Acta 1817:590–597

    Google Scholar 

  • Pivovarova NB, Andrews SB (2010) Calcium-dependent mitochondrial function and dysfunction in neurons. FEBS J 277:3622–3636

    PubMed  CAS  Google Scholar 

  • Rajagopalan K, Watt DS, Haley BE (1999) Orientation of GTP and ADP within their respective binding sites in glutamate dehydrogenase. Eur J Biochem 265:564–571

    PubMed  CAS  Google Scholar 

  • Rees DM, Leslie AG, Walker JE (2009) The structure of the membrane extrinsic region of bovine ATP synthase. Proc Natl Acad Sci USA 106:21597–21601

    PubMed  CAS  Google Scholar 

  • Richards TA, Archibald JM (2011) Cell evolution: gene transfer agents and the origin of mitochondria. Curr Biol 21:R112–R114

    PubMed  CAS  Google Scholar 

  • Robblee JP, Cao W, Henn A, Hannemann DE, De La Cruz EM (2005) Thermodynamics of nucleotide binding to actomyosin V and VI: a positive heat capacity change accompanies strong ADP binding. Biochemistry 44:10238–10249

    PubMed  CAS  Google Scholar 

  • Salje J, Ludwig B, Richter OM (2005) Is a third proton-conducting pathway operative in bacterial cytochrome c oxidase? Biochem Soc Trans 33:829–831

    PubMed  CAS  Google Scholar 

  • Samavati L, Lee I, Mathes I, Lottspeich F, Hüttemann M (2008) Tumor necrosis factor alpha inhibits oxidative phosphorylation through tyrosine phosphorylation at subunit I of cytochrome c oxidase. J Biol Chem 283:21134–21144

    PubMed  CAS  Google Scholar 

  • Sazanov LA, Hinchliffe P (2006) Structure of the hydrophilic domain of respiratory complex I from Thermus thermophilus. Science 311(5766):1430–1433

    PubMed  CAS  Google Scholar 

  • Scacco S, Vergari R, Scarpulla RC, Technikova-Dobrova Z, Sardanelli A, Lambo R, Lorusso V, Papa S (2000) cAMP-dependent phosphorylation of the nuclear encoded 18-kDa (IP) subunit of respiratory complex I and activation of the complex in serum-starved mouse fibroblast cultures. J Biol Chem 275:17578–17582

    PubMed  CAS  Google Scholar 

  • Schägger H (2002) Respiratory chain supercomplexes of mitochondria and bacteria. Biochim Biophys Acta 1555:154–159

    PubMed  Google Scholar 

  • Schmidt O, Pfanner N, Meisinger C (2010) Mitochondrial protein import: from proteomics to functional mechanisms. Nat Rev Mol Cell Biol 11:655–667

    PubMed  CAS  Google Scholar 

  • Schultz IJ, Chen C, Paw BH, Hamza I (2010) Iron and porphyrin trafficking in heme biogenesis. J Biol Chem 285:26753–26759

    PubMed  CAS  Google Scholar 

  • Sheftel A, Stehling O, Lill R (2010) Iron-sulfur proteins in health and disease. Trends Endocrinol Metab 21:302–314

    PubMed  CAS  Google Scholar 

  • Shimokata K, Katayama Y, Murayama H, Suematsu M, Tsukihara T, Muramoto K, Aoyama H, Yoshikawa S, Shimada H (2007) The proton pumping pathway of bovine heart cytochrome c oxidase. Proc Natl Acad Sci USA 104:4200–4205

    PubMed  CAS  Google Scholar 

  • Shinzawa-Itoh K, Aoyama H, Muramoto K, Terada H, Kurauchi T, Tadehara Y, Yamasaki A, Sugimura T, Kurono S, Tsujimoto K, Mizushima T, Yamashita E, Tsukihara T, Yoshikawa S (2007) Structures and physiological roles of 13 integral lipids of bovine heart cytochrome c oxidase. EMBO J 26:1713–1725

    PubMed  CAS  Google Scholar 

  • Shoubridge EA (2001) Cytochrome c oxidase deficiency. Am J Med Genet 106:46–52

    PubMed  CAS  Google Scholar 

  • Stock D, Leslie AG, Walker JE (1999) Molecular architecture of the rotary motor in ATP synthase. Science 286(5445):1700–1705

    PubMed  CAS  Google Scholar 

  • Sun F, Huo X, Zhai Y, Wang A, Xu J, Su D, Bartlam M, Rao Z (2005) Crystal structure of mitochondrial respiratory membrane protein complex II. Cell 121:1043–1057

    PubMed  CAS  Google Scholar 

  • Tiefenbrunn T, Liu W, Chen Y, Katritch V, Stout CD, Fee JA, Cherezov V (2011) High resolution structure of the ba3 cytochrome c oxidase from Thermus thermophilus in a lipidic environment. PLoS One 6(7):e22348

    PubMed  CAS  Google Scholar 

  • Tsukihara T, Aoyama H, Yamashita E, Tomizaki T, Shinzawa-Itoh H, Shinzawa-Itoh K, Nakashima R, Yaono R, Yoshikawa S (1995) Structures of metal sites of oxidized bovine heart cytochrome coxidase at 2.8 Å. Science 269:1069–1074

    PubMed  CAS  Google Scholar 

  • Tsukihara T, Aoyama H, Yamashita E, Tomizaki T, Yamaguchi H, Shinzawa-Itoh K, Nakashima R, Yaono R, Yoshikawa S (1996) The whole structure of the 13-subunit oxidized cytochrome c oxidase at 2.8 Å. Science 272:1136–1144

    PubMed  CAS  Google Scholar 

  • Van den Bogert C, Dekker HL, Cornelissen JC, Van Kuilenburg AB, Bolhuis PA, Muijsers AO (1992) Isoforms of cytochrome c oxidase in tissues and cell lines of the mouse. Biochim Biophys Acta 1099:118–122

    PubMed  Google Scholar 

  • Villani G, Attardi G (1997) In vivo control of respiration by cytochrome c oxidase in wild-type and mitochondrial DNA mutation-carrying human cells. Proc Natl Acad Sci USA 94:1166–1171

    PubMed  CAS  Google Scholar 

  • Villani G, Attardi G (2001) In vivo measurements of respiration control by cytochrome c oxidase and in situ analysis of oxidative phosphorylation. Methods Cell Biol 65:119–131

    PubMed  CAS  Google Scholar 

  • Vogt S, Rhiel A, Koch V, Kadenbach B (2007) Regulation of oxidative phosphorylation by inhibition of its enzyme complexes via reversible phosphorylation. Curr Enzyme Inhib 3:189–206

    CAS  Google Scholar 

  • von Ballmoos C, Gennis RB, Ädelroth P, Brzezinski P (2011) Kinetic design of the respiratory oxidases. Proc Natl Acad Sci USA 108:11057–11062

    Google Scholar 

  • Walker JE, Saraste M, Runswick MJ, Gay NJ (1982) Distantly related sequences in the alpha- and beta-subunits of ATP synthase, myosin, kinases and other ATP-requiring enzymes and a ­common nucleotide binding fold. EMBO J 1:945–951

    PubMed  CAS  Google Scholar 

  • Wallace DC (2010) Mitochondrial DNA mutations in disease and aging. Environ Mol Mutagen 51:440–450

    PubMed  CAS  Google Scholar 

  • Wallin IE (1923) The mitochondria problem. Am Nat 57(650):255–261

    Google Scholar 

  • Watt IN, Montgomery MG, Runswick MJ, Leslie AG, Walker JE (2010) Bioenergetic cost of making an adenosine triphosphate molecule in animal mitochondria. Proc Natl Acad Sci USA 107:16823–16827

    PubMed  CAS  Google Scholar 

  • Wierenga RK, Terpstra P, Hol WG (1986) Prediction of the occurrence of the ADP-binding beta alpha beta-fold in proteins, using an amino acid sequence fingerprint. J Mol Biol 187: 101–107

    PubMed  CAS  Google Scholar 

  • Yoshikawa S, Shinzawa-Itoh K, Nakashima R, Yaono R, Yamashita E, Inoue N, Yao M, Fei MJ, Libeu CP, Mizushima T, Yamaguchi H, Tomizaki T, Tsukihara T (1998) Redox-coupled crystal structural changes in bovine heart cytochrome c oxidase. Science 280(5370):1723–1729

    PubMed  CAS  Google Scholar 

  • Yoshikawa S, Muramoto K, Shinzawa-Itoh K, Aoyama H, Tsukihara T, Shimokata K, Katayama Y, Shimada H (2006) Proton pumping mechanism of bovine heart cytochrome c oxidase. Biochim Biophys Acta 1757:1110–1116

    PubMed  CAS  Google Scholar 

  • Yu MA, Egawa T, Shinzawa-Itoh K, Yoshikawa S, Yeh SR, Rousseau DL, Gerfen GJ (2011) Radical formation in cytochrome c oxidase. Biochim Biophys Acta 1807:1295–1304

    PubMed  CAS  Google Scholar 

  • Zhang Z, Huang L, Shulmeister VM, Chi YI, Kim KK, Hung LW, Crofts AR, Berry EA, Kim SH (1998) Electron transfer by domain movement in cytochrome bc1. Nature 392(6677): 677–684

    PubMed  CAS  Google Scholar 

  • Zimmer C (2009) Origins. On the origin of eukaryotes. Science 325:666–668

    PubMed  CAS  Google Scholar 

Download references

Acknowledgement

I would really like to thank Rabia Ramzan for preparing Fig. 1.1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernhard Kadenbach .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Kadenbach, B. (2012). Introduction to Mitochondrial Oxidative Phosphorylation. In: Kadenbach, B. (eds) Mitochondrial Oxidative Phosphorylation. Advances in Experimental Medicine and Biology, vol 748. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3573-0_1

Download citation

Publish with us

Policies and ethics