Skip to main content

Bacteriophage Therapy of Experimental Bubonic Plague in Mice

  • Conference paper
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 954))

Abstract

The emergence of multidrug-resistant strains of Yersinia pestis may result in epidemics of untreatable bubonic and pneumonic plague and requires urgent development of alternative therapeutics. The purpose of this work was to test plague diagnostic bacteriophages as a potential therapy against experimental bubonic plague. Purified phages φA1122 and L-413C remained stable at least for 2 years in phosphate-buffered saline with gelatin at 4°C. None of these two phages showed a cytotoxic effect on mouse macrophages, as well as human monocytes and hepatocytes. The φA1122 phage also demonstrated a lack of acute toxicity to mice. After single intraperitoneal (IP) or intramuscular (IM) administration to mice in a dose of 5 × 109 PFU (plaque-forming unit), the phage was detected in blood, liver, and spleen during 5 days of observation in one log higher concentrations when using IP route (vs. IM route). Pharmacodynamics tests showed the propagation of φA1122 in the liver and spleen of mice infected with Y. pestis. Neither φA1122 and L-413C suspensions nor the phage particles preadsorbed to Y. pestis cells demonstrated any bactericidal effect inside mouse macrophages. However, a IP administration of φA1122 (5 × 109 live phage particles) provided 40% protection of BALB/c mice against 1,000 LD50 of Y. pestis CO92 and extended mean time to death of nonsurvivors by 84%. Our data showed that φA1122 bacteriophage is a promising alternative therapy against multidrug-resistant plague.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abedon ST, Thomas-Abedon C (2010) Phage therapy pharmacology. Curr Pharm Biotechnol 11:28–47

    Article  PubMed  CAS  Google Scholar 

  • Advier M (1933) Etude d’un bactériophage antipesteux. Bull Soc Pathol Exot 26:94–99

    Google Scholar 

  • Anderson GW, Leary SEC, Williamson ED et al (1996) Recombinant V antigen protects mice against pneumonic and bubonic plague caused by F1-capsule-positive and -negative strains of Yersinia pestis. Infect Immun 64:4580–4585

    PubMed  CAS  Google Scholar 

  • Bearden SW, Fetherston JD, Perry RD (1997) Genetic organization of the yersiniabactin biosynthetic region and construction of avirulent mutants in Yersinia pestis. Infect Immun 65:1659–1668

    PubMed  CAS  Google Scholar 

  • Biswas B, Adhya S, Washart P et al (2002) Bacteriophage therapy rescues mice bacteremic from a clinical isolate of vancomycin-resistant Enterococcus faecium. Infect Immun 70:204–210

    Article  PubMed  CAS  Google Scholar 

  • Bogovazova GG, Voroshilova NN, Bondarenko VM (1991) The efficacy of Klebsiella pneumoniae bacteriophage in the therapy of experimental Klebsiella infection. Zh Mikrobiol Epidemiol Immunobiol 4:5–8

    PubMed  Google Scholar 

  • Byrne WR, Welkos SL, Pitt ML et al (1998) Antibiotic treatment of experimental pneumonic plague in mice. Antimicrob Agents Chemother 42:675–681

    Article  PubMed  CAS  Google Scholar 

  • Capparelli R, Parlato M, Borriello G et al (2007) Experimental phage therapy against Staphylococcus aureus in mice. Antimicrob Agents Chemother 51:2765–2773

    Article  PubMed  CAS  Google Scholar 

  • Carmody LA, Gill JJ, Summer EJ et al (2010) Efficacy of bacteriophage therapy in a model of Burkholderia cenocepacia pulmonary infection. J Infect Dis 201:264–271

    Article  PubMed  CAS  Google Scholar 

  • Carstensen JT, Rhodes CT (eds) (2000) Drug stability: principles and practices, 3rd edn. Marcel Dekker, Inc., New York

    Google Scholar 

  • Cerveny KE, DePaola A, Duckworth DH, Gulig PA (2002) Phage therapy of local and systemic disease caused by Vibrio vulnificus in iron-dextran-treated mice. Infect Immun 70:6251–6262

    Article  PubMed  CAS  Google Scholar 

  • Chu MC (2000) Laboratory manual of plague diagnostic tests. Centers for Disease Control and Prevention, Fort Collins, CO

    Google Scholar 

  • Dennis DT, Gage KG (1999) Plague. In: Armstrong D, Cohen J (ed) Infectious diseases, vol. 2. Mosby, Armstrong, and Cohen, London

    Google Scholar 

  • Deresinski S (2009) Bacteriophage therapy: exploiting smaller fleas. Clin Infect Dis 48:1096–1101

    Article  PubMed  Google Scholar 

  • Duplantier J-M, Duchemin J-B, Chanteau S, Carniel E (2005) From the recent lessons of the Malagasy foci towards a global understanding of the factors involved in plague reemergence. Vet Res 36:437–453

    Article  PubMed  Google Scholar 

  • Filippov AA, Sergueev KV, He Y et al (2011) Bacteriophage-resistant mutants in Yersinia pestis: identification of phage receptors and attenuation for mice. PLoS One 6(9):e25486

    Article  PubMed  CAS  Google Scholar 

  • Fischetti VA (2010) Bacteriophage endolysins: a novel anti-infective to control gram-positive pathogens. Int J Med Microbiol 300:357–362

    Article  PubMed  CAS  Google Scholar 

  • Freeman VJ (1951) Studies on the virulence of bacteriophage-infected strains of Corynebacterium diphtheriae. J Bacteriol 61:675–688

    PubMed  CAS  Google Scholar 

  • Gage KL, Kosoy MY (2005) Natural history of plague: perspectives from more than a century of research. Annu Rev Entomol 50:505–528

    Article  PubMed  CAS  Google Scholar 

  • Galimand M, Guiyoule A, Gerbaud G et al (1997) Multiple antibiotic resistance in Yersinia pestis mediated by a self-transferable plasmid. N Engl J Med 337:677–680

    Article  PubMed  CAS  Google Scholar 

  • Galimand M, Carniel E, Courvalin P (2006) Resistance of Yersinia pestis to antimicrobial agents. Antimicrob Agents Chemother 50:3233–3236

    Article  PubMed  CAS  Google Scholar 

  • Garcia E, Elliott JM, Ramanculov E et al (2003) The genome sequence of Yersinia pestis bacteriophage φA1122 reveals an intimate history with the coliphage T3 and T7 genomes. J Bacteriol 185:5248–5262

    Article  PubMed  CAS  Google Scholar 

  • Garcia E, Chain P, Elliott JM et al (2008) Molecular characterization of L-413C, a P2-related plague diagnostic bacteriophage. Virology 372:85–96

    Article  PubMed  CAS  Google Scholar 

  • Gill JJ, Hyman P (2010) Phage choice, isolation, and preparation for phage therapy. Curr Pharm Biotechnol 11:2–14

    Article  PubMed  CAS  Google Scholar 

  • Gill JJ, Pacan JC, Carson ME et al (2006) Efficacy and pharmacokinetics of bacteriophage therapy in treatment of subclinical Staphylococcus aureus mastitis in lactating dairy cattle. Antimicrob Agents Chemother 50:2912–2918

    Article  PubMed  CAS  Google Scholar 

  • Guiyoule A, Gerbaud G, Buchrieser C et al (2001) Transferable plasmid-mediated resistance to streptomycin in a clinical isolate of Yersinia pestis. Emerg Infect Dis 7:43–48

    Article  PubMed  CAS  Google Scholar 

  • Hagens S, Loessner MJ (2010) Bacteriophage for biocontrol of foodborne pathogens: calculations and considerations. Curr Pharm Biotechnol 11:58–68

    Article  PubMed  CAS  Google Scholar 

  • Heo YJ, Lee YR, Jung HH et al (2009) Antibacterial efficacy of phages against Pseudomonas aeruginosa infections in mice and Drosophila melanogaster. Antimicrob Agents Chemother 53:2469–2474

    Article  PubMed  CAS  Google Scholar 

  • Hinnebusch BJ, Rosso M-L, Schwan TG, Carniel E (2002) High-frequency conjugative transfer of antibiotic resistance genes to Yersinia pestis in the flea midgut. Mol Microbiol 46:349–354

    Article  PubMed  CAS  Google Scholar 

  • Housby JN, Mann NH (2009) Phage therapy. Drug Discov Today 14:536–540

    Article  PubMed  CAS  Google Scholar 

  • Imamaliev OG, Serebryakova VG, Anisimova TI et al (1986) Comparative estimation of activity and specificity of diagnostic plague bacteriophages, L-413C and Pokrovskaya. In: Bektemirov TA, Zhouravleva YZ, Litvinova MY (eds) Standards, strains, and methods of control of bacterial and viral preparations. Mechnikov Institute Press, Moscow, pp 102–106

    Google Scholar 

  • Inglesby TV, Dennis DT, Henderson DA et al (2000) Plague as a biological weapon: medical and public health management. Working Group on Civilian Biodefense JAMA 283:2281–2290

    CAS  Google Scholar 

  • Iteman I, Guiyoule A, de Almeida AM et al (1993) Relationship between loss of pigmentation and deletion of the chromosomal iron-regulated irp2 gene in Yersinia pestis: evidence for separate but related events. Infect Immun 61:2717–2722

    PubMed  CAS  Google Scholar 

  • Korzeniewski C, Callewaert DM (1983) An enzyme-release assay for natural cytotoxicity. J Immunol Methods 64:313–320

    Article  PubMed  CAS  Google Scholar 

  • Kutter E, De Vos D, Gvasalia G et al (2010) Phage therapy in clinical practice: treatment of human infections. Curr Pharm Biotechnol 11:69–86

    Article  PubMed  CAS  Google Scholar 

  • Larina VS, Anisimov PI, Adamov AK (1970) A novel strain of plague bacteriophage for identification of Pasteurella pestis. Probl Particularly Dangerous Infect 11:132–136

    Google Scholar 

  • Levin BR, Bull JJ (2004) Population and evolutionary dynamics of phage therapy. Nat Rev Microbiol 2: 166–173

    Article  PubMed  CAS  Google Scholar 

  • Lukaszewski RA, Kenny DJ, Taylor R et al (2005) Pathogenesis of Yersinia pestis infection in BALB/c mice: effects on host macrophages and neutrophils. Infect Immun 73:7142–7150

    Article  PubMed  CAS  Google Scholar 

  • Marza JA, Soothill JS, Boydell P, Collyns TA (2006) Multiplication of therapeutically administered bacteriophages in Pseudomonas aeruginosa infected patients. Burns 32:644–646

    Article  PubMed  Google Scholar 

  • McVay CS, Velásquez M, Fralick JA (2007) Phage therapy of Pseudomonas aeruginosa infection in a mouse burn wound model. Antimicrob Agents Chemother 51:1934–1938

    Article  PubMed  CAS  Google Scholar 

  • Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63

    Article  PubMed  CAS  Google Scholar 

  • Muniesa M, Jofre J (1998) Abundance in sewage of bacteriophages that infect Escherichia coli O157:H7 and that carry the Shiga toxin 2 gene. Appl Environ Microbiol 64:2443–2448

    PubMed  CAS  Google Scholar 

  • Naumov AV, Samoilova LV (eds) (1992) Manual on prophylaxis of plague. Russian Research Anti-Plague Institute “Microbe” Press, Saratov

    Google Scholar 

  • No authors listed (1992) Centers for Disease Control and Prevention. Pneumonic plague—Arizona. JAMA 268:2146–2147

    Google Scholar 

  • Perry RD, Fetherston JD (1997) Yersinia pestis—etiologic agent of plague. Clin Microbiol Rev 10:35–66

    PubMed  CAS  Google Scholar 

  • Pokrovskaya MP (1929) A plague bacteriophage in dead susliks. Gigiena Epidemiol 12:31–34

    Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

    Google Scholar 

  • Schofield DA, Molineux IJ, Westwater C (2009) Diagnostic bioluminescent phage for detection of Yersinia pestis. J Clin Microbiol 47:3887–3894

    Article  PubMed  CAS  Google Scholar 

  • Sergueev KV, He Y, Borschel RH et al (2010) Rapid and sensitive detection of Yersinia pestis using amplification of plague diagnostic bacteriophages monitored by real-time PCR. PLoS ONE 5(6):e11337

    Article  PubMed  Google Scholar 

  • Skurnik M, Strauch E (2006) Phage therapy: facts and fiction. Intern J Med Microbiol 296:5–14

    Article  CAS  Google Scholar 

  • Soothill JS (1992) Treatment of experimental infections of mice with bacteriophages. J Med Microbiol 37:258–261

    Article  PubMed  CAS  Google Scholar 

  • Waldor M, Mekalanos J (1996) Lysogenic conversion by a filamentous phage encoding cholera toxin. Science 272:1910–1914

    Article  PubMed  CAS  Google Scholar 

  • Watanabe R, Matsumoto T, Sano G et al (2007) Efficacy of bacteriophage therapy against gut-derived sepsis caused by Pseudomonas aeruginosa in mice. Antimicrob Agents Chemother 51:446–452

    Article  PubMed  CAS  Google Scholar 

  • Welch TJ, Fricke WF, McDermott PF et al (2007) Multiple antimicrobial resistance in plague: an emerging public health risk. PLoS One 2(3):e309

    Article  PubMed  Google Scholar 

  • Welkos S, Pitt ML, Martinez M et al (2002) Determination of the virulence of the pigmentation-deficient and pigmentation/plasminogen activator-deficient strains of Yersinia pestis in non-human primate and mouse models of pneumonic plague. Vaccine 20:2206–2214

    Article  PubMed  CAS  Google Scholar 

  • Zhao X, Wu W, Qi Z et al (2010) The complete genome sequence and proteomics of Yersinia pestis phage ­Yep-phi. J Gen Virol 92:216–221

    Article  PubMed  Google Scholar 

  • Zietz BP, Dunkelberg H (2004) The history of the plague and the research on the causative agent Yersinia pestis. Int J Hyg Environ Health 207:165–178

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Defense Threat Reduction Agency, Joint Science and Technology Office, Medical S&T Division. We wish to thank Ms. Dipali J. Patel and Mrs. Stacy M. Banko-Crawford for excellent technical assistance. Dr. Martin E. Schriefer (Bacterial Diseases Branch, Division of Vector-Borne Infectious Disease, National Center for Zoonotic, Vector-Borne and Enteric Diseases, Centers for Disease Control and Prevention, Ft. Collins, CO) is gratefully acknowledged for providing bacteriophage ϕA1122. The findings and opinions expressed herein belong to the authors and do not necessarily reflect the official views of the WRAIR, the U.S. Army or the Department of Defense.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrey A. Filippov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this paper

Cite this paper

Filippov, A.A. et al. (2012). Bacteriophage Therapy of Experimental Bubonic Plague in Mice. In: de Almeida, A., Leal, N. (eds) Advances in Yersinia Research. Advances in Experimental Medicine and Biology, vol 954. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3561-7_41

Download citation

Publish with us

Policies and ethics