Skip to main content

Reliable Transport in Delay Tolerant Networks

  • Chapter
  • First Online:
Routing in Opportunistic Networks

Abstract

In this paper, we provide a holistic picture of the research efforts towards the design and development of transport protocols for DTN environments. In the first part, we provide an exhaustive and insightful survey of the literature on transport protocols and proposals aimed at DTNs. In the second part, we describe a new reliable transport protocol based on coding. Our proposed protocol is targeted at terrestrial DTN environments consisting of a large number of highly mobile nodes with random mobility. The key idea behind our proposal is that the average dynamics under such a network setting can be captured by a fluid-limit model and the protocol parameters can be optimized based on the fluid-limit model. Through simplified versions of our proposal, we guide the readers in a step-by-step manner through the intricacies of obtaining deterministic fluid-limit models for networks where the dynamics can be stochastically modeled by a continuous time Markov chain with a large state space. We also provide the relevant background material so as to help the readers clearly understand the methodology and enable him/her to apply the technique to their own research problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ahmed S, Kanhere S (2009) Hubcode: message forwarding using hub-based network coding in delay tolerant networks. In: Proceedings of the 12th ACM international conference on Modeling, analysis and simulation of wireless and mobile systems, pp 288–296

    Google Scholar 

  2. Akan OB, Fang J, Akyildiz IF (2004) TP-Planet: a reliable transport protocol for InterPlanetary internet. IEEE J Sel Areas Commun (JSAC) 22(2):348–361

    Article  Google Scholar 

  3. Akyildiz I, Akan Ö, Chen C, Fang J, Su W (2003) Interplanetary internet: state-of-the-art and research challenges. Comput Netw 43(2):75–112

    Article  MATH  Google Scholar 

  4. Albee A, Palluconi F, Arvidson R (1998) Mars global surveyor mission: overview and status. Science 279(5357):1671–1672

    Article  Google Scholar 

  5. Ali A, Altman E, Chahed T, Panda M, Sassatelli L (2011) A new reliable transport scheme in delay tolerant networks based on acknowledgments and random linear coding. In: IEEE 2011 23rd International Teletraffic Congress (ITC), pp 214–221

    Google Scholar 

  6. Allman M, Dawkins S, Glover D, Griner J, Tran D, Henderson T, Heidemann J, Touch J, Kruse H, Ostermann S et al (2000) Ongoing tcp research related to satellites. RFC2760

    Google Scholar 

  7. Altman E, Pellegrini FD, Sassatelli L (2010) Dynamic control of coding in delay tolerant networks. In: Proceedings of IEEE Infocom, pp 1–5

    Google Scholar 

  8. Balakrishnan H, Padmanabhan V, Katz R (1999) The effects of asymmetry on tcp performance. Mob Netw Appl 4(3):219–241

    Article  Google Scholar 

  9. Balakrishnan H, Seshan S, Amir E, Katz R (1995) Improving TCP/IP performance over wireless networks. In: Proceedings of the 1st ACM annual international conference on mobile computing and networking, pp 2–11

    Google Scholar 

  10. Balakrishnan H et al (1998) Challenges to reliable data transport over heterogeneous wireless networks. University of California, Berkeley

    Google Scholar 

  11. Barakat C, Altman E, Dabbous W (2000) On tcp performance in a heterogeneous network: a survey. IEEE Commun Mag 38(1):40–46

    Article  Google Scholar 

  12. Biswas S, Morris R (2005) ExOR: Opportunistic multi-hop routing for wireless networks. In: Proceedings of Sigcomm, pp 133–144

    Google Scholar 

  13. Brakmo L, Peterson L (1995) TCP Vegas: end to end congestion avoidance on a global internet. IEEE J Sele Areas Commun 13(8):1465–1480

    Article  Google Scholar 

  14. Bulut E, Wang Z, Szymanski B (2010) Cost-effective multiperiod spraying for routing in delay-tolerant networks. IEEE/ACM Trans Netw (TON) 18(5):1530–1543

    Article  Google Scholar 

  15. Bulut E, Wang Z, Szymanski B (2010) Cost efficient erasure coding based routing in delay tolerant networks. In: 2010 IEEE international conference on communications (ICC), pp 1–5

    Google Scholar 

  16. Burleigh S, Hooke A, Torgerson L, Fall K, Cerf V, Durst B, Scott K, Weiss H (2003) Delay-tolerant networking: an approach to interplanetary internet. IEEE Commun Mag 41(6):128–136

    Google Scholar 

  17. Caini C, Cruickshank H, Farrell S, Marchese M (2011) Delay-and disruption-tolerant networking (DTN): an alternative solution for future satellite networking applications. Proc IEEE 99:1–18

    Article  Google Scholar 

  18. Cao Y, Sun Z Routing in delay/disruption tolerant networks: a taxonomy, survey and challenges

    Google Scholar 

  19. CCSDS: CCSDS File Delivery Protocol (CFDP). In: CCSDS 727.0-B-4, Blue Book (2007)

    Google Scholar 

  20. Chen L, Yu C, Sun T, Chen Y, Chu H (2006) A hybrid routing approach for opportunistic networks. In: Proceedings of the 2006 ACM SIGCOMM workshop on Challenged networks, pp 213–220, Pise, Italy, Sept. 11–15

    Google Scholar 

  21. Chen L, Yu C, Tseng C, Chu H, Chou C (2008) A content-centric framework for effective data dissemination in opportunistic networks. IEEE J Sel Areas Commun 26(5):761–772

    Article  Google Scholar 

  22. Chung KC, Li YC, Liao W (2010) Exploiting network coding for data forwarding in delay tolerant networks. In: 2010 IEEE 71st Vehicular Technology Conference (VTC 2010-Spring), pp 1–5

    Google Scholar 

  23. Dai Y, Yang P, Chen G, Wu J (2010) Cfp: Integration of fountain codes and optimal probabilistic forwarding in dtns. In: 2010 IEEE global telecommunications conference (GLOBECOM 2010), pp 1–5

    Google Scholar 

  24. Durst R, Feighery P, Scott K (2000) Why not use the standard internet suite for the interplanetary internet? In: Interplanetary internet study seminar, California Institute of Technology-1999

    Google Scholar 

  25. Eggert L, Gont F (2009) Tcp user timeout option

    Google Scholar 

  26. Eggert L, Schütz S, Schmid S (2005) Tcp extensions for immediate retransmissions. draft-eggert-tcpm-tcp-retransmit-now-02 (work in progress)

    Google Scholar 

  27. Ethier S, Kurtz TG (2005) Markov processes: characterization and convergence. Wiley Series in Probability And Statistics, Wiley Interscience, Published Online: 27 May 2008, ISBN: 9780470316658, doi:10.1002/9780470316658

  28. Fall K, Farrell S (2008) DTN: an architectural retrospective. IEEE J Sel Areas Commun 26(5):828–836

    Article  Google Scholar 

  29. Fall K, Hong W, Madden S (2003) Custody transfer for reliable delivery in delay tolerant, networks. IRB-TR-03-030

    Google Scholar 

  30. Fall K, McCanne S (2005) You don’t know jack about network performance. Queue 3(4):54–59

    Google Scholar 

  31. Fall K (2003) A delay-tolerant network architecture for challenged internets. In: Proceedings of the 2003 conference on Applications, technologies, architectures, and protocols for computer communications. SIGCOMM ’03, ACM, New York, pp 27–34, http://doi.acm.org/10.1145/863955.863960

  32. Fang J, Akyildiz IF (2007) RCP-Planet: a rate control protocol for interplanetary internet. Int J Satell Commun Netw 25(2):167–194, http://dx.doi.org/10.1002/sat.873

    Google Scholar 

  33. Farrell S, Cahill V (2005) LTP-T: a generic delay tolerant transport protocol. Technical Report TCD-CS-2005-69, Computer Science, Trinity College Dublin

    Google Scholar 

  34. Farrell S, Cahill V (2007) Evaluating LTP-T: A DTN-Friendly transport protocol. In: 2007 IWSSC ’07 International Workshop onSatellite and space communications, pp 178–181

    Google Scholar 

  35. Farrell S, Ramadas M, Burleigh S (2008) Licklider transmission protocol-security extensions

    Google Scholar 

  36. For Space Data Systems, C.C. (2006) Space Communications Protocol Standards (SCPS) - Transport Protocol (SCPS-TP). In: CCSDS 714.0-B-2, Blue Book

    Google Scholar 

  37. Franklin S, Slonski J, Kerridge S, Noreena G, Townes S, Schwartzbaum E, Synnott S, Deutsch M, Edwards C, Devereaux A et al (2004) The 2009 mars telecom orbiter mission. In: IEEE Proc of IEEE on aerospace conference, vol 1, 6-13 March 2004, Big Sky, MT, USA

    Google Scholar 

  38. Ghani N, Dixit S (1999) Tcp/ip enhancements for satellite networks. IEEE Commun Mag 37(7):64–72

    Article  Google Scholar 

  39. Graf J, Zurek R, Eisen H, Jai B, Johnston M, DePaula R (2005) The mars reconnaissance orbiter mission. Acta Astronaut 57(2):566–578

    Article  Google Scholar 

  40. Groenvelt R, Nain P, Koole G (2005) The message delay in mobile Ad Hoc networks. Perform Eval 62:210–228

    Article  Google Scholar 

  41. Grossglauser M, Tse D (2002) Mobility increases the capacity of ad hoc wireless networks. IEEE/ACM Trans Netw 10(4):477–486

    Article  Google Scholar 

  42. Haas Z, Halpern J, Li L (2002) Gossip-based ad hoc routing. In: Proceedings of IEEE, INFOCOM 2002. Twenty-first annual joint conference of the IEEE computer and communications societies. vol. 3, pp 1707–1716

    Google Scholar 

  43. Harras KA, Almeroth KC (2006) Transport Layer Issues in delay tolerant mobile Networks. In: IFIP Networking, Coimbra, Portugal

    Google Scholar 

  44. Holland G, Vaidya N (2002) Analysis of TCP performance over mobile ad hoc networks. ACM Wirel Netw 8(2):275–288

    Article  MATH  Google Scholar 

  45. Hui P, Chaintreau A, Scott J, Gass R, Crowcroft J, Diot C (2005) Pocket switched networks and human mobility in conference environments. In: Proceedings of the 2005 ACM SIGCOMM workshop on Delay-tolerant networking, pp 244–251

    Google Scholar 

  46. Ibrahim M, Hanbali AA, Nain P (2007) Delay and resource analysis in MANETs in presence of throwboxes. Perform Eval 24(9–12):933–945

    Article  Google Scholar 

  47. Internet Research Task Force Delay-Tolerant Networking Research Group, http://www.dtnrg.org

  48. Jacobson V, Braden R, Borman D (1992) Tcp extensions for high performance, http://coders.meta.net.nz/~perry/rfc/index-1323.html (Last retrieved April 23, 2013)

  49. Jain S, Demmer M, Patra R, Fall K (2005) Using redundancy to cope with failures in a delay tolerant network. In: ACM SIGCOMM computer communication review. vol. 35, pp 109–120

    Google Scholar 

  50. Jonson T, Pezeshki J, Chao V, Smith K, Fazio J (2008) Application of delay tolerant networking (DTN) in airborne networks. In: Military communications conference, 2008. MILCOM 2008, IEEE, pp 1–7

    Google Scholar 

  51. Juang P, Oki H, Wang Y, Martonosi M, Peh L, Rubenstein D (2002) Energy-efficient computing for wildlife tracking: Design tradeoffs and early experiences with zebranet. In: ACM Sigplan Notices. vol 37, ACM, pp 96–107

    Google Scholar 

  52. Kayastha N, Niyato D, Wang P, Hossain E (2011) Applications, architectures, and protocol design issues for mobile social networks: a survey. Proc IEEE 99(12):2130–2158

    Article  Google Scholar 

  53. Khabbaz M, Fawaz W, Assi C (2011) Probabilistic bundle relaying schemes in two-hop vehicular delay tolerant networks. Commun Lett IEEE 15(3):281–283

    Article  Google Scholar 

  54. Krifa A, Barakat C, Spyropoulos T (2011) Mobitrade: trading content in disruption tolerant networks. In: Proceedings of the 6th ACM workshop on Challenged networks, ACM, pp 31–36

    Google Scholar 

  55. Krifa A, Barakat C, Spyropoulos T (2012) Message drop and scheduling in DTNs:  theory and practice. IEEE Trans Mobile Comput 11(9):1470–1483

    Google Scholar 

  56. Kurtz TG (1970) Solutions of ordinary differential equations as limits of pure jump markov processes. J Appl Probab 7(1):49–58

    Article  MathSciNet  MATH  Google Scholar 

  57. Lin Y, Liang B, Li B (2007) Performance modeling of network coding in epidemic routing. In: Proceedings of the 1st international MobiSys workshop on Mobile opportunistic networking, ACM, pp 67–74

    Google Scholar 

  58. Lin Y, Li B, Liang B (2008) Stochastic analysis of network coding in epidemic Routing. IEEE J Sel Area Comm 26(5):794–808

    Google Scholar 

  59. Lin Y, Li B, Liang B (2008) Efficient network coded data transmissions in disruption tolerant networks, pp 1508–1516

    Google Scholar 

  60. Luby M (2002) LT codes. In: IEEE FOCS, pp 271–282

    Google Scholar 

  61. Lucani D, Stojanovic M, Médard M (2009) Random linear network coding for time division duplexing: when to stop talking and start listening. In: Proc. of IEEE Infocom 2009, pp. 1800–1808 Rio de Janeiro, Brazil

    Google Scholar 

  62. Lun DS, Médard M, Effros M (2004) On coding for reliable communication over packet networks. In: Proceedings of 42nd annual allerton conference on communication, control, and, computing, pp 20–29

    Google Scholar 

  63. Macedo D, dos Santos A, Pujolle G (2008) From tcp/ip to convergent networks: challenges and taxonomy. Commun Surv Tutorials IEEE 10(4):40–55

    Google Scholar 

  64. Mahmoodi T, Friderikos V, Holland O, Hamid Aghvami A (2007) Cross-layer design to improve wireless tcp performance with link-layer adaptation. In: Vehicular technology conference, 2007. VTC-2007 Fall. 2007 IEEE 66th, IEEE, pp 1504–1508

    Google Scholar 

  65. Mandelbaum A, Massey W, Reiman MI (1998) Strong approximations for markovian service networks. Queueing Syst 30:149–201

    Article  MathSciNet  MATH  Google Scholar 

  66. Mandelbaum A, Pats G (1995) State-dependent queues: approximations and applications. In: Kelly F, Williams RJ (eds) IMA volumes in mathematics and its applications, vol 71. Springer, Berlin, pp 239–282

    Google Scholar 

  67. Muhammad F, Franck L, Farrell S (2007) Transmission protocols for challenging networks: Ltp and ltp-t. In: International workshop on satellite and space Ccommunications, 2007. IWSSC’07, IEEE, pp 145–149

    Google Scholar 

  68. Nikander P, Moskowitz R (2006) Host identity protocol (hip) architecture. RFC 4423, http://www.ietf.org/rfc/rfc4423.txt (Last visited April 23, 2013)

  69. Ott J, Kutscher D (2004) Drive-thru internet: Ieee 802.11 b for automobile users. In:Proc. of IEEE Infocom 2004, vol 1, 7–11 March 2004, Hong-Kong

    Google Scholar 

  70. Ott J, Kutscher D (2005) A disconnection-tolerant transport for drive-thru internet environments. In: Proceedings IEEE INFOCOM 2005. 24th Annual joint conference of the IEEE computer and communications societies, vol. 3, IEEE, pp 1849–1862

    Google Scholar 

  71. Papastergiou G, Psaras I, Tsaoussidis V (2009) Deep-space transport protocol: a novel transport scheme for space DTNs. Comput Commun Spec Issue Comput Communicationson Delay Disruption Tolerant Netw 32(16):1757–1767

    Google Scholar 

  72. Papastergiou G, Samaras C, Tsaoussidis V (2010) Where does transport layer fit into space dtn architecture? In: Advanced satellite multimedia systems conference (asma) and the 11th signal processing for space communications workshop (spsc), 2010 5th, IEEE, pp 81–88

    Google Scholar 

  73. Pentland A, Fletcher R, Hasson A (2004) Daknet: rethinking connectivity in developing nations. Computer 37(1):78–83

    Article  Google Scholar 

  74. Pereira P, Casaca A, Rodrigues J, Soares V, Triay J, Cervelló-Pastor C (2011) From delay-tolerant networks to vehicular delay-tolerant networks. Commun Surv Tutorials IEEE 99:1–17

    Google Scholar 

  75. Postel J (1980) User datagram protocol. In: RFC-768, http://www.ietf.org/rfc/rfc768.txt (Last visited April 23, 2013)

  76. Postel J (1981) Transmission control protocol. In: RFC-793, http://www.ietf.org/rfc/rfc793.txt (Last visited April 23, 2013)

  77. Price K, Storn R (1997) Differential evolution: a simple and efficient heuristic for global optimization over continuous spaces. J Global Optimiz 11:341–359

    Article  MathSciNet  MATH  Google Scholar 

  78. Psaras I, Papastergiou G, Tsaoussidis V, Peccia N (2008) DS-TP: Deep-space transport protocol. In: Aerospace conference, 2008 IEEE, pp 1–13

    Google Scholar 

  79. Psaras I, Wood L, Tafazolli R (2010) Delay-/disruption-tolerant networking: State of the art and future challenges. Technical Report, University of Surrey, UK

    Google Scholar 

  80. Ramadas M, Burleigh S, Farrell S (2008) Licklider transmission protocol—motivation. In: RFC-5325, http://tools.ietf.org/html/rfc5325 (Last visited April 23, 2013)

  81. Ramadas M, Burleigh S, Farrell S (2008) Licklider transmission protocol specification. In: RFC-5326, http://tools.ietf.org/html/rfc5326 (Last visited April 23, 2013)

  82. Samaras C, Tsaoussidis V (2008) DTTP: a delay-tolerant transport protocol for space internetworks. In: Proc. of second ERCIM Workshop on E-Mobility, pp. 3–14, May 30, Tampere, Finland

    Google Scholar 

  83. SSTL: Surrey Satellite Technology Ltd., http://www.sstl.co.uk

  84. Sarkar M, Shukla KK, Dasgupta KS (2011) Article:a survey of transport protocols for deep space communication networks. Int J Comput Appl 31(8):25–32, published by Foundation of Computer Science. New York, USA

    Google Scholar 

  85. Schütz S, Eggert L, Schmid S, Brunner M (2005) Protocol enhancements for intermittently connected hosts. ACM SIGCOMM Comput Commun Rev 35(3):5–18

    Article  Google Scholar 

  86. Scott K, Burleigh S (2007) Bundle protocol specification. In: RFC-5050

    Google Scholar 

  87. Seligman M, Fall K, Mundur P (2006) Alternative custodians for congestion control in delay tolerant networks. In: Proceedings of the 2006 SIGCOMM workshop on challenged networks. ACM , pp 229–236

    Google Scholar 

  88. Seligman M, Fall K, Mundur P (2007) Storage routing for dtn congestion control. Wirel Commun Mob Comput J, Wiley 7(10):1183–1196

    Google Scholar 

  89. Shokrollahi MA (2003) Raptor codes. In: IEEE international symposium on information theory

    Google Scholar 

  90. Small T, Haas Z (2003) The shared wireless infostation model: a new ad hoc networking paradigm (or where there is a whale, there is a way). In: Proceedings of the 4th ACM international symposium on Mobile ad hoc networking and computing, ACM, pp 233–244

    Google Scholar 

  91. Vahdat A, Becker D (2000) Epidemic routing for partially-connected ad hoc networks. In: Techical Report CS-200006, Duke University

    Google Scholar 

  92. Vahdat A, Becker D et al (2000) Epidemic routing for partially connected ad-hoc networks. Technical Report, Technical Report CS-200006, Duke University

    Google Scholar 

  93. Vellambi B, Subramanian R, Fekri F, Ammar M (2007) Reliable and efficient message delivery in delay tolerant networks using rateless codes. In: Proceedings of the 1st international MobiSys workshop on Mobile opportunistic networking, ACM, pp 91–98

    Google Scholar 

  94. Wang R, Taleb T, Jamalipour A, Sun B (2009) Protocols for reliable data transport in space internet. Commun Surv Tutorials IEEE 11(2):21–32

    Article  Google Scholar 

  95. Wang Y, Jain S, Martonosi M, Fall K (2005) Erasure-coding based routing for opportunistic networks. In: Proceedings of the 2005 ACM SIGCOMM workshop on delay-tolerant networking, ACM, pp 229–236

    Google Scholar 

  96. Wang Y, Wu H (2007) Delay/Fault-Tolerant mobile sensor network (DFT-MSN): a new paradigm for pervasive information gathering. IEEE Trans Mob Comput 6(9):1021–1034

    Article  Google Scholar 

  97. Whitt W (2002) Stochastic-process limits. Springer, Heidelberg

    Google Scholar 

  98. Widmer J, Le Boudec J (2005) Network coding for efficient communication in extreme networks. In: Proceedings of the 2005 ACM SIGCOMM workshop on Delay-tolerant networking, ACM , pp 284–291

    Google Scholar 

  99. Wood L, Eddy W, Holliday P (2009) A bundle of problems. In: Aerospace conference, 2009 IEEE, pp 1–17

    Google Scholar 

  100. Wood L, McKim J, Eddy W, Ivancic W, Jackson C (2009) Saratoga: a scalable file transfer protocol. Network Working Group Internet-Draft, http://tools.ietf.org/html/draft-wood-tsvwg-saratoga-10 (Last visited April 23, 2013)

  101. Zhang Q, Jin Z, Zhang Z, Shu Y (2009) Network coding for applications in the delay tolerant network (dtn). In: 5th international conference on Mobile ad-hoc and sensor networks, 2009. MSN ’09, pp 376–380

    Google Scholar 

  102. Zhang X, Neglia G, Kurose J, Towsley D (2006) On the benefits of random linear coding for unicast applications in disruption tolerant networks. In: 2006 4th international symposium on modeling and optimization in mobile, ad hoc and wireless networks, IEEE, pp 1–7

    Google Scholar 

  103. Zhang X, Neglia G, Kurose J, Towsley D (2007) Performance modeling of epidemic routing. Comput Netw 51:2867–2891

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manoj Panda .

Editor information

Editors and Affiliations

10.1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Appendices

Appendix A: Fluid-Limits and Fluid Approximations

In this appendix, we provide a brief background on fluid limits and fluid approximations. Please refer to [27, 56, 65, 66] and [97] for more details.

Intuitively speaking, a fluid-limit is a limit of a sequence of stochastic processes. The fluid approximation provides the first-order deterministic approximation to a stochastic process, and represents its average behavior.

Consider a sequence \(\{Z^{(n)}(t), t \ge 0\}\), \(n = 1, 2, \dots \), of stochastic processes. The index \(n\) represents some quantity which is scaled up to infinity in order to study the sequence of processes at the limit, as \({n \uparrow \infty }\). For queuing systems, \(n\) might represent “the number of servers” (as in infinite server approximations) or “a multiplying factor of one or more transition rates” (as in heavy-traffic approximations) or some other quantity w.r.t. which the scaling is performed. In our context of a mobile network, \(n\) might represent the number of mobile nodes. For a chemical reaction, \(n\) might represent the number of molecules and so on.

Recall that the Strong Law of Large Numbers (SLLN) (resp. Weak Law of Large Numbers (WLLN)) says that, under suitable conditions, the average of \(n\) random variables with a common mean \(\mu \), converges almost surely (resp. in probability) to \(\mu \), as \(n \uparrow \infty \). Consider the SLLN (or WLLN) type rescaling \(z^{(n)}(t) := Z^{(n)}(t)/n\). Under certain conditions, as \(n \uparrow \infty \), the sequence of rescaled processes \(\{z^{(n)}(t), t \ge 0\}\), \(n = 1, 2, \dots \), converges almost surely (or sometimes in probability) to a deterministic process \(\{z(t), t \ge 0\}\) (see, for example, Theorem 4.1 of [66]). Then, the limit \(\{z(t), t \ge 0\}\) is called the fluid limit associated with the sequence \(\{Z^{(n)}(t), t \ge 0\}\), \(n = 1, 2, \dots \), and the approximation

$$\begin{aligned} Z^{(n)}(t) \approx n z(t) , \quad \forall t \ge 0 , \end{aligned}$$
(10.12)

is called the fluid approximation for the \(n\)th system.

Appendix B: Density-Dependent Markov Chains

In this appendix, we recall a known fluid-limit result for the so-called density dependent Markov chains. First, we fix some notation. The set of integers (resp. real numbers) is denoted by \(\mathbb{Z }\) (resp. \(\mathbb{R }\)). The space of \(d\)-dimensional vectors with integer (resp. real) components is denoted by \(\mathbb{Z }^d\) (resp. \(\mathbb{R }^d\)). The absolute value of a scalar \(b\) is denoted by \(|b|\). The norm of a vector \(z\) is denoted by \(\Vert z\Vert \). The transpose of a vector \(z\) (resp. a matrix \(G\)) is denoted by \(z^T\) (resp. \(G^T\)).

Consider a one-parameter family of continuous time Markov chains \(\{Z^{(N)}(t),\) \({t \ge 0}\}\), indexed by \(N = 1, 2, \dots \), where \(\{Z^{(N)}(t)\}\) has state space \(\mathcal{S }^{(N)} \subset \mathbb{Z }^d\) and transition rate matrix \(Q^{(N)} = [q^{(N)}(Z,Z^{\prime })]\), \(Z,Z^{\prime } \in \mathcal{S }^{(N)}\).

Definition 10.1

(Density Dependent Markov Chains [27, 56]) The family of Markov chains \(\{Z^{(N)}(t), t \ge 0\}\), \(N = 1, 2, \dots \), is called density-dependent if there exist a subset \(\mathcal{R }\) of \(\mathbb{R }^d\) and continuous functions \(f_l\), \(l \in \mathbb{Z }^d\), with \(f_l : \mathcal{R } \rightarrow \mathbb{R }\), such that

$$\begin{aligned} \quad \quad \quad \quad q^{(N)}(Z,Z+l) = N f_l \left( \frac{Z}{N}\right) , \quad \quad l \ne 0. \quad \quad \quad \quad \end{aligned}$$

In practice, instead of considering all possible \(l \in \mathbb{Z }^d\), one only needs to consider the much smaller set

$$\begin{aligned} \mathcal{L } = \{l \in \mathbb{Z }^d : l \ne 0, q^{(N)}(Z,Z+l) \ne 0 \; \text{ for } \text{ some } \; Z \in \mathcal{S }^{(N)}\}, \end{aligned}$$

whose elements correspond to (actual) transitions of positive rate. For all \(l \notin \mathcal{L }\), one can set \(f_l\) identically equal to zero. Henceforth, we only consider transitions with positive rates and denote the total number of such transitions by \(|\mathcal{L }|\).

Define the drift function \(F(\cdot )\) by

$$\begin{aligned} F(w) := \sum _l l f_l(w), \quad w \in \mathcal{R }. \end{aligned}$$
(10.13)

Note that

$$\begin{aligned} F(w) = (F_1(w), \dots , F_d(w))^T \end{aligned}$$

is a \(d\)-dimensional column vector of functions, because \(l\) is a \(d\)-dimensional column vector. Defining the density process \(\{z^{(N)}(\cdot )\}\) by

$$\begin{aligned} z^{(N)}(t) = \frac{Z^{(N)}(t)}{N}, \end{aligned}$$

we recall the Functional Strong Law of Large Numbers (FSLLN) for density-dependent Markov chains (see [Chap. 11, Theorem 2.1][27]).

Theorem 10.1

(Kurtz [27]) Suppose that for each compact set \(K \subset \mathcal{R }\),

$$\begin{aligned} \sum _l \Vert l\Vert \sup _{w \in K} f_l(w) < \infty , \end{aligned}$$

and there exists \(M_K > 0\) such that

$$\begin{aligned} \Vert F(w) - F(w^{\prime })\Vert \le M_K \Vert w-w^{\prime }\Vert , \quad \forall w, w^{\prime } \in K. \end{aligned}$$

Suppose also that

$$\begin{aligned} \lim _{N \rightarrow \infty } z^{(N)}(0) = z_0, \end{aligned}$$

and \(z(\cdot )\) satisfies

$$\begin{aligned} z(t) = z_0 + \int _{0}^t F(z(u)) {{d}}u, \quad t \ge 0. \end{aligned}$$
(10.14)

Then, for every \(t\), \(0 \le t < \infty \),

$$\begin{aligned} \lim _{N \rightarrow \infty } \sup _{0 \le s \le t} \Vert z^{(N)}(s)-z(s)| = 0, \end{aligned}$$

almost surely.

Remark 10.2

Theorem 1 says that, when the drift function \(F(\cdot )\) is uniformly bounded and Lipschitz continuous over compact subsets of \(\mathcal{R }\), then, as \(N \rightarrow \infty \), the density process \(\{z^{(N)}\}\) converges uniformly over compact subsets (u.o.c.) to a deterministic function \(z(\cdot )\), almost surely (a.s.).

Appendix C: Derivation of Eq. (10.1)

In this appendix, we provide justifications for the ODE models which we have used as approximations for modeling the network dynamics when the number of relays \(N\) is large. We formally derive only Eq. (10.1). Derivation of fluid-limit models is similar for the other cases.

In the case of single packet transfer without buffer expiry, the positive transition rates of the Markov chain \(\{(X^{(N)}(t), Y^{(N)}(t)), t \ge 0\}\) out of the state \((X,Y)\) are given by

$$\begin{aligned} \left( \begin{array}{c} X \\ Y \end{array} \right) \longrightarrow \left( \begin{array}{c} X+1 \\ Y \end{array} \right) \quad \text{ at } \text{ rate } \quad \left( \beta ^{(N)}_s n_s^{(N)} + \beta ^{(N)}_r X \right) (N-X-Y) \end{aligned}$$
$$\begin{aligned} \left( \begin{array}{c} X \\ Y \end{array} \right) \longrightarrow \left( \begin{array}{c} X \\ Y+1 \end{array} \right) \quad \text{ at } \text{ rate } \quad \beta ^{(N)}_r Y (N-X-Y) \end{aligned}$$
$$\begin{aligned} \left( \begin{array}{c} X \\ Y \end{array} \right) \longrightarrow \left( \begin{array}{c} X-1 \\ Y+1 \end{array} \right) \quad \text{ at } \text{ rate } \quad \beta ^{(N)}_d n_d^{(N)} X + \beta ^{(N)}_r XY \end{aligned}$$

Writing \(Z = (X,Y)\), the positive transition rates out of the state \((X,Y)\) of the Markov chain \(\{(X^{(N)}(t), Y^{(N)}(t)), t \ge 0\}\) can be written in the density-dependent form \(N f_l\left( \frac{Z}{N}\right) \) given by (see Appendix B for a meaning of the density-dependent form)

$$\begin{aligned} N f_l\left( \frac{Z}{N}\right)&= \left\{ \begin{array}{l} N \left( \displaystyle \left( (N\beta ^{(N)}_s) \left( \frac{n_s^{(N)}}{N}\right) + (N\beta ^{(N)}_r) \left( \frac{X}{N}\right) \right) \left( 1-\frac{X}{N}-\frac{Y}{N}\right) \right) \\ \text{ for } \quad l = (1,0)^T, \\ \\ N \left( \displaystyle (N\beta ^{(N)}_r) \left( \frac{Y}{N}\right) \left( 1-\frac{X}{N}-\frac{Y}{N}\right) \right) , \quad \text{ for } \quad l = (0,1)^T, \\ \\ N \left( \displaystyle (N\beta ^{(N)}_d) \left( \frac{n^{(N)}_d}{N}\right) \left( \frac{X}{N}\right) + (N \beta ^{(N)}_r) \left( \frac{X}{N}\right) \left( \frac{Y}{N}\right) \right) , \\ \text{ for } \quad l = (-1,1)^T, \end{array} \right. \end{aligned}$$

provided that \(\lambda _r := N \beta ^{(N)}_r\), \(\lambda _s := N \beta ^{(N)}_s\), \(\lambda _d := N \beta ^{(N)}_d\), \(s := n^{(N)}_s/N\) and \(d := n^{(N)}_d/N\) are constants, independent of \(N\) (which we assume, as in [103]). Let \(z=(x,y)\). Defining \(f_l(z) = f_l(x,y)\) and \(F(z) = F(x,y)\) by

$$\begin{aligned} f_l(x,y) = \left\{ \begin{array}{ll} (s \lambda _s + \lambda _r x) (1-x-y), &{} \quad l = (1,0)^T, \\ \lambda _r y (1-x-y), &{} \quad l = (0,1)^T, \\ {{d}} \lambda _d x + \lambda _r xy, &{} \quad l = (-1,1)^T, \end{array} \right. \end{aligned}$$

and

$$\begin{aligned} F(x,y) = \sum _{l} l f(x,y,w) = \left[ \begin{array}{c} (s \lambda _s + \lambda _r x) (1-x-y) - \lambda _r xy - d \lambda _d x \\ {{d}} \lambda _d x + \lambda _r y (1-x-y) + \lambda _r xy \end{array} \right] , \end{aligned}$$

respectively, and applying Theorem 1 (see Appendix B), we observe that, as \(N \rightarrow \infty \), the rescaled process \(\left\{ \left( \frac{X^{(N)}(t)}{N}, \frac{Y^{(N)}(t)}{N}\right) , t \ge 0\right\} \) converges almost surely to the unique solution of the ODE

$$\begin{aligned} \frac{{{d}}z(t)}{{{d}}t} = F(z(t)), \end{aligned}$$

i.e., to the unique solutions \(x(t)\) and \(y(t)\) of the ODEs given by Eq. (10.1), with initial conditions \(x(0) := \displaystyle \lim _{N \rightarrow \infty } \frac{X(0)}{N} = 0\) and \(y(0) := \displaystyle \lim _{N \rightarrow \infty } \frac{Y(0)}{N} = 0\).

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ali, A., Panda, M., Sassatelli, L., Chahed, T., Altman, E. (2013). Reliable Transport in Delay Tolerant Networks. In: Woungang, I., Dhurandher, S., Anpalagan, A., Vasilakos, A. (eds) Routing in Opportunistic Networks. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3514-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-3514-3_10

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-3513-6

  • Online ISBN: 978-1-4614-3514-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics