Skip to main content

Nanoceria and Thioredoxin Regulate a Common Antioxidative Gene Network in tubby Mice

  • Conference paper
  • First Online:
Retinal Degenerative Diseases

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 801))

Abstract

Oxidative stress is a node common to the causes and effects of various ocular diseases. We have shown that thioredoxin has neuroprotective effects on tubby photoreceptors. We also demonstrated that nanoceria (cerium oxide nanoparticles), which are direct antioxidants, have long-term effects on prevention of retinal degeneration in tubby mice. Here, using commercially available PCR array plates, we surveyed the regulation in expression of 89 oxidative stress-associated genes in the eyes of P12 tubby mice which are either intravitreally injected with nanoceria or in which the Trx gene is overexpressed. Our data demonstrate that nanoceria and Trx regulate the same group of genes associated with antioxidative stress and antioxidant defense.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Trx:

Thioredoxin

ASK1:

Apoptosis signal kinase 1

MAPKs:

Mitogen-activated protein kinases

Nanoceria:

Cerium oxide nanoparticles

P7:

Postnatal day 7

Wt:

Wild type

IACUC:

Institutional Animal Care and Use Committee

Nrf2:

Nuclear factor erythroid 2-related factor

siRNA:

Small interfering RNA

ROS:

Reactive oxygen species

ICAM-1:

Intercellular adhesion molecule 1

HMVEC:

Human microvascular endothelial cells

Nxn:

Nucleoredoxin

Cys:

Cysteine residue

Wnt:

Wingless/Intergration, Wg/Int

Dvl:

Dishevelled

RPE:

Retinal pigment epithelium

bZIP:

Basic leucine zipper

ARACNE:

Algorithm for the Reconstruction of Accurate Cellular Networks

CLR:

Context Likelihood of Relatedness

References

  1. Collet JF, Messens J (2010) Structure, function, and mechanism of thioredoxin proteins. Antioxid Redox Signal 13:1205–1216

    Article  PubMed  CAS  Google Scholar 

  2. Nakamura H, Hoshino Y, Okuyama H, Matsuo Y, Yodoi J (2009) Thioredoxin 1 delivery as new therapeutics. Adv Drug Deliv Rev 61:303–309

    Article  PubMed  CAS  Google Scholar 

  3. Kong L, Zhou X, Li F, Yodoi J, McGinnis J, Cao W (2010) Neuroprotective effect of overexpression of thioredoxin on photoreceptor degeneration in Tubby mice. Neurobiol Dis 38:446–455

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  4. Chen J, Patil S, Seal S, McGinnis JF (2006) Rare earth nanoparticles prevent retinal degeneration induced by intracellular peroxides. Nat Nanotechnol 1:142–150

    Article  PubMed  CAS  Google Scholar 

  5. Kong L, Cai X, Zhou X, Wong LL, Karakoti AS, Seal S et al (2011) Nanoceria extend photoreceptor cell lifespan in tubby mice by modulation of apoptosis/survival signaling pathways. Neurobiol Dis 42:514–523

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  6. Cai X, Sezate SA, Seal S, McGinnis JF (2012) Sustained protection against photoreceptor degeneration in tubby mice by intravitreal injection of nanoceria. Biomaterials 33:8771–8781

    Article  PubMed  CAS  Google Scholar 

  7. Davies KJ (1999) The broad spectrum of responses to oxidants in proliferating cells: a new paradigm for oxidative stress. IUBMB Life 48:41–47

    Article  PubMed  CAS  Google Scholar 

  8. Dong A, Shen J, Krause M, Akiyama H, Hackett SF, Lai H et al (2006) Superoxide dismutase 1 protects retinal cells from oxidative damage. J Cell Physiol 208:516–526

    Article  PubMed  CAS  Google Scholar 

  9. Hashizume K, Hirasawa M, Imamura Y, Noda S, Shimizu T, Shinoda K et al (2008) Retinal dysfunction and progressive retinal cell death in SOD1-deficient mice. Am J Pathol 172:1325–1331

    Article  PubMed Central  PubMed  Google Scholar 

  10. Imamura Y, Noda S, Hashizume K, Shinoda K, Yamaguchi M, Uchiyama S et al (2006) Drusen, choroidal neovascularization, and retinal pigment epithelium dysfunction in SOD1-deficient mice: a model of age-related macular degeneration. Proc Natl Acad Sci USA 103:11282–11287

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  11. Lubos E, Kelly NJ, Oldebeken SR, Leopold JA, Zhang YY, Loscalzo J et al (2011) Glutathione peroxidase-1 deficiency augments proinflammatory cytokine-induced redox signaling and human endothelial cell activation. J Biol Chem 286:35407–35417

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  12. Wood ZA, Schroder E, Robin Harris J, Poole LB (2003) Structure, mechanism and regulation of peroxiredoxins. Trends Biochem Sci 28:32–40

    Article  PubMed  CAS  Google Scholar 

  13. Fisher AB (2011) Peroxiredoxin 6: a bifunctional enzyme with glutathione peroxidase and phospholipase A(2) activities. Antioxid Redox Signal 15:831–844

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  14. Funato Y, Miki H (2007) Nucleoredoxin, a novel thioredoxin family member involved in cell growth and differentiation. Antioxid Redox Signal 9:1035–1057

    Article  PubMed  CAS  Google Scholar 

  15. Funato Y, Miki H (2010) Redox regulation of Wnt signalling via nucleoredoxin. Free Radic Res 44:379–388

    Article  PubMed  CAS  Google Scholar 

  16. Hackam AS (2005) The Wnt signaling pathway in retinal degenerations. IUBMB Life 57:381–388

    Article  PubMed  CAS  Google Scholar 

  17. Rex TS, Tsui I, Hahn P, Maguire AM, Duan D, Bennett J et al (2004) Adenovirus-mediated delivery of catalase to retinal pigment epithelial cells protects neighboring photoreceptors from photo-oxidative stress. Hum Gene Ther 15:960–967

    Article  PubMed  CAS  Google Scholar 

  18. Taylor RC, Acquaah-Mensah G, Singhal M, Malhotra D, Biswal S (2008) Network inference algorithms elucidate Nrf2 regulation of mouse lung oxidative stress. PLoS Comput Biol 4:e1000166

    Article  PubMed Central  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This review was written with the partial support of NIH grant COBRE-P20 RR017703, R01EY018724, R01EY022111.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James F. McGinnis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, LLC

About this paper

Cite this paper

Cai, X., Yodoi, J., Seal, S., McGinnis, J. (2014). Nanoceria and Thioredoxin Regulate a Common Antioxidative Gene Network in tubby Mice. In: Ash, J., Grimm, C., Hollyfield, J., Anderson, R., LaVail, M., Bowes Rickman, C. (eds) Retinal Degenerative Diseases. Advances in Experimental Medicine and Biology, vol 801. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3209-8_104

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-3209-8_104

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-3208-1

  • Online ISBN: 978-1-4614-3209-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics