Skip to main content

The Application of Scanning Transmission Electron Microscopy (STEM) to the Study of Nanoscale Systems

  • Chapter
  • First Online:
Modeling Nanoscale Imaging in Electron Microscopy

Abstract

In this chapter, the basic principles of atomic resolution scanning transmission electron microscopy (STEM) will be described. Particular attention will be paid to the benefits of the incoherent Z-contrast imaging technique for structural determination and the benefits of aberration correction for improved spatial resolution and sensitivity in the acquired images. In addition, the effect that the increased beam current in aberration corrected systems has on electron beam-induced structural modifications of inorganic systems will be discussed. Procedures for controlling the electron dose will be described along with image processing methods that enable quantified information to be extracted from STEM images. Several examples of the use of aberration-corrected STEM for the study of nanoscale systems will be presented; a quantification of vacancies in clathrate systems, a quantification of N doping in GaAs, a quantification of the size distribution in nanoparticle catalysts, and an observation of variability in dislocation core composition along a low-angle grain boundary in SrTiO3. The potential for future standardized methods to reproducibly quantify structures determined by STEM and/or high-resolution TEM will also be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hirsch PB, Horne RW, Whelan MJ (1956) Direct observation of the arrangement and motion of dislocations in aluminum. Philos Mag 1:677

    Article  CAS  Google Scholar 

  2. Jia CL, Urban K (2004) Atomic resolution measurement of oxygen concentration in oxide materials. Science 303:2001–2004

    Article  CAS  Google Scholar 

  3. Haider M, Uhlemann S, Schwan E, Rose H, Kabius B, Urban K (1998) Electron microscopy image enhanced. Nature 392:768–769

    Article  CAS  Google Scholar 

  4. Batson PE, Dellby N, Krivanek OL (2002) Sub-angstrom resolution using aberration corrected optics. Nature 418:617–620

    Article  CAS  Google Scholar 

  5. Erni R, Rossell MD, Kisielowski C, Dahmen U (2009) Atomic resolution imaging with a sub-50 pm electron probe. Phys Rev Lett 102:096101

    Article  Google Scholar 

  6. Muller DA, Kourkoutis LF, Murfitt M, Song JH, Wang HY, Silcox J, Dellby N, Krivanek OL (2008) Atomic scale chemical imaging of composition and bonding by aberration corrected microscopy. Science 319:1073–1076

    Article  CAS  Google Scholar 

  7. Kimoto K, Asaka T, Nagai T, Saito M, Matsui Y, Ishizuka K (2007) Element selective imaging of atomic columns in a crystal using STEM and EELS. Nature 450:702–704

    Article  CAS  Google Scholar 

  8. Lazar S, Hebert C, Zandbergen HW (2004) Investigation of hexagonal and cubic GaN by high resolution EELS and DFT. Ultramicroscopy 98:249–257

    Article  CAS  Google Scholar 

  9. Mitterbauer C, Kothleitner G, Grogger W, Zandbergen H, Freitag B, Tiemeijer P, Hofer F (2003) Electron energy loss near edge structures of 3d transition metal oxides recorded at high energy resolution. Ultramicroscopy 96:469–480

    Article  CAS  Google Scholar 

  10. Nelayah J, Kociak M, Stephan O, de Abajo FJG, Tence M, Henrard L, Taverna D, Pastoriza-Santos I, Liz-Marzan LM, Colliex C (2007) Mapping surface plasmons on a single metallic nanoparticle. Nat Phys 3:348–353

    Article  CAS  Google Scholar 

  11. Arslan I, Hyun JK, Erni R, Fairchild MN, Hersee SD, Muller DA (2009) Using electrons as a high resolution probe of optical modes in individual nanowires. Nano Lett 9:4073–4077

    Article  CAS  Google Scholar 

  12. Frank J, Chiu W, Degn L (1988) The characterization of structural variations within a crystal field. Ultramicroscopy 26:345–360

    Article  CAS  Google Scholar 

  13. Glaeser RM, Downing K, DeRosier D, Chiu W, Frank J (2007) Electron crystallography of biological macromolecules, Oxford University Press, New York

    Google Scholar 

  14. Unwin PN, Henderson R (1975) Molecular structure determination by electron microscopy of unstained crystalline specimens. J Mol Biol 94:425–440

    Article  CAS  Google Scholar 

  15. van Heel M, Frank J (1981) Use of multivariate statistics in analysing the images of biological macromolecules. Ultramicroscopy 6:187–194

    Google Scholar 

  16. Kuhlbrandt W, Wang DN, Fujiyoshi Y (1994) Atomic model of plant light-harvesting complex by electron crystallography. Nature 367:614–621

    Article  CAS  Google Scholar 

  17. Morgan D, Grant RA, Chiu W, Frank J (1992) Patch averaging of electron images of GP3 ∗ I crystals with variable thickness. J Struct Biol 108:245–256

    Article  CAS  Google Scholar 

  18. Hardt S, Wang B, Schmid MF (1996) A brief description of I.C.E.: the integrated crystallographic environment. J Struct Biol 116:68–70

    Article  CAS  Google Scholar 

  19. Hayward SB, Stroud RM (1981) Projected structure of purple membrane determined to 3.7 A resolution by low temperature electron microscopy. J Mol Biol 151:491–517

    Article  CAS  Google Scholar 

  20. Henderson R, Baldwin JM, Ceska TA, Zemlin F, Beckmann E, Downing KH (1990) Model for the structure of bacteriorhodopsin based on high-resolution electron cryo-microscopy. J Mol Biol 213:899–929

    Article  CAS  Google Scholar 

  21. Henderson R, Baldwin JM, Downing KH, Lepault J, Zemlin F (1986) Structure of purple membrane from Halobacterium halobium: recording, measurement and evaluation of electron micrographs at 3.5 A resolution. Ultramicroscopy 19:147–178

    Article  CAS  Google Scholar 

  22. Henderson R, Glaeser RM (1985) Quantitative analysis of image contrast in electron micrographs of beam-sensitive crystals. Ultramicroscopy 16:139–150

    Article  CAS  Google Scholar 

  23. Henderson R, Unwin PN (1975) Three-dimensional model of purple membrane obtained by electron microscopy. Nature 257:28–32

    Article  CAS  Google Scholar 

  24. Gonen T, Sliz P, Kistler J, Cheng Y, Walz T (2004) Aquaporin-0 membrane junctions reveal the structure of a closed water pore. Nature 429:193–197

    Article  CAS  Google Scholar 

  25. Crewe AV, Wall J, Langmore J (1970) Visibility of single atoms. Science 168:1338–1339

    Article  CAS  Google Scholar 

  26. LeBeau JM, D’Alfonso AJ, Findlay SD, Stemmer S, Allen LJ (2009) Quantitative comparisons of contrast in experimental and simulated bright-field STEM images. Phys Rev B Condens Matter Mater Phys 80:174106

    Google Scholar 

  27. Pennycook SJ, Boatner LA (1988) Chemically sensitive structure-imaging with a scanning-transmission electron-microscope. Nature 336:565–567

    Article  CAS  Google Scholar 

  28. Hillyard S, Loane RF, Silcox J (1993) Annular dark-field imaging—resolution and thickness effects. Ultramicroscopy 49:14–25

    Article  CAS  Google Scholar 

  29. Loane RF, Xu P, Silcox J (1992) Incoherent imaging of zone axis crystals with ADF STEM. Ultramicroscopy 40:121–138

    Article  Google Scholar 

  30. Amali A, Rez P (1997) Theory of lattice resolution in high-angle annular dark-field images. Microsc Microanal 3:28–46

    CAS  Google Scholar 

  31. Jesson DE, Pennycook SJ (1995) Incoherent imaging of crystals using thermally scattered electrons. Proc R Soc Lond A Math Phys Sci 449:273–293

    Article  CAS  Google Scholar 

  32. Nellist PD, Pennycook SJ (1999) Incoherent imaging using dynamically scattered coherent electrons. Ultramicroscopy 78:111–124

    Article  CAS  Google Scholar 

  33. Browning ND, Chisholm MF, Pennycook SJ (1993) Atomic resolution chemical analysis using a STEM. Nature 366:143–146

    Article  CAS  Google Scholar 

  34. Browning ND, Pennycook SJ (1993) Atomic resolution spectroscopy for the microanalysis of materials. Microbeam Anal 2:81–89

    CAS  Google Scholar 

  35. Batson PE (1993) Simultaneous stem imaging and electron-energy-loss spectroscopy with atomic-column sensitivity. Nature 366:727–728

    Article  CAS  Google Scholar 

  36. Muller DA, Tzou Y, Ray R, Silcox J (1993) Mapping SP2 and SP3 states of carbon at subnanometer spatial resolution. Nature 366:725–727

    Article  CAS  Google Scholar 

  37. Duscher G, Browning ND, Pennycook SJ (1998) Atomic column resolved EELS. Physica Status Solidi 166:327–342

    Article  CAS  Google Scholar 

  38. Klenov DO, Stemmer S (2006) Contributions to contrast in experimental high-angle annular dark field images. Ultramicroscopy 106:889–901

    Article  CAS  Google Scholar 

  39. LeBeau JM, Findlay SD, Allen LJ, Stemmer S (2008) Quantitative atomic resolution STEM. Phys Rev Lett 100:206101

    Article  Google Scholar 

  40. Findlay SD, Klenov DO, Stemmer S, Allen LJ (2008) Atomic number contrast in high angle annular dark field imaging of crystals. Mater Sci Technol 24:660–666

    Article  CAS  Google Scholar 

  41. LeBeau JM, Stemmer S (2008) Experimental quantification of annular dark field images in STEM. Ultramicroscopy 108:1653–1658

    Article  CAS  Google Scholar 

  42. LeBeau JM, Findlay SD, Wang XQ, Jacobson AJ, Allen LJ, Stemmer S (2009) High angle scattering of fast electrons from crystals containing heavy elements: simulation and experiment. Phys Rev B Condens Matter Mater Phys 79:214110

    Google Scholar 

  43. Kirkland EJ, Loane RF, Silcox J (1987) Simulation of annular dark field STEM images using a modified multislice method. Ultramicroscopy 23:77–96

    Article  Google Scholar 

  44. Ishizuka K (2002) A practical approach for STEM image simulation based on the FFT multislice method. Ultramicroscopy 90:71–83

    Article  CAS  Google Scholar 

  45. James EM, Browning ND (1999) Practical aspects of atomic resolution imaging and spectroscopy in STEM. Ultramicroscopy 78:125–139

    Article  CAS  Google Scholar 

  46. Dellby N, Krivanek OL, Nellist PD, Batson PE, Lupini AR (2001) Progress in aberration-corrected STEM,. J Electron Microsc 50:177–185

    Article  CAS  Google Scholar 

  47. Krivanek OL, Dellby N, Lupini AR (2000) Advances in Cs-corrected STEM. Proceedings of the 12th EUREM Congress, Brno I, 149–150

    Google Scholar 

  48. Krivanek OL, Nellist PD, Dellby N, Murfitt MF, Szilagyi Z (2003) Towards sub-0.5 angstrom beams. Ultramicroscopy 96:229–237

    Article  CAS  Google Scholar 

  49. Xu X, Beckman SP, Specht P, Weber ER, Chrzan DC, Arslan I, Erni RP, Browning ND Bleloch A, Kisielowski C (2005) Distortion and segregation in a dislocation core region with atomic resolution. Phys Rev Lett 95:145501

    Article  CAS  Google Scholar 

  50. Klie RF, Buban JP, Varela M, Franceschetti A, Joos C, Zhu Y, Browning ND, Pantelides ST, Pennycook SJ (2005) A cooperative doping mechanism to enhance grain boundary transport in high-Tc superconductors. Nature 435:475–478

    Article  CAS  Google Scholar 

  51. Buban JP, Matsunaga K, Chen J, Shibata N, Ching WY, Yamamoto T, Ikuhara Y (2006) Grain boundary strengthening in alumina by rare earth impurities. Science 311:212

    Article  CAS  Google Scholar 

  52. Krivanek OL, Chisholm MF, Nicolosi V, Pennycook TJ, Corbin GJ, Dellby N, Murfitt MF, Own CS, Szilagyi ZS, Oxley MP, Pantelides ST, Pennycook SJ (2010) Atom-by-atom structural and chemical analysis by annular dark field microscopy. Nature 464:571–574

    Article  CAS  Google Scholar 

  53. Winkelman GB, Dwyer C, Hudson TS, Nguyen-Manh D, Doblinger M, Satet RL, Hoffmann MJ, Cockayne DJH (2004) Arrangement of rare-earth elements at prismatic grain boundaries in silicon nitride. Philos Mag Lett 84:755–762

    Article  CAS  Google Scholar 

  54. van Benthem K, Lupini AR, Kim M, Baik HS, Doh S, lee JH, Oxley MP, Findlay SD, Allen LJ, Luck JT, Pennycook SJ (2005) Three-dimensional imaging of individual hafnium atoms inside a semiconductor device. Appl Phys Lett 87:034104

    Google Scholar 

  55. Cosgriff EC, D’Alfonso AJ, Allen LJ, Findlay SD, Kirkland AI, Nellist PD (2008) 3-D imaging in double aberration corrected scanning confocal electron microscopy, Part 1: elastic scattering. Ultramicroscopy 108:1558–1566

    Article  CAS  Google Scholar 

  56. D’Alfonso AJ, Cosgriff EC, Findlay SD, Behan G, Kirkland AI, Nellist PD, Allen LJ (2008) 3-D imaging in double aberration corrected scanning confocal electron microscopy, Part 2: inelastic scattering. Ultramicroscopy 108:1567–1578

    Article  Google Scholar 

  57. Xin HL, Muller DA (2009) Aberration corrected ADF-STEM depth sectioning and prospects for reliable 3D imaging in S/TEM. J Electron Microsc 58:157–165

    Article  CAS  Google Scholar 

  58. Arslan I, Yates TJ, Browning ND, Midgley PA (2005) Embedded nanostructures revealed in 3-D. Science 309:2195–2198

    Article  CAS  Google Scholar 

  59. Arslan I, Tong J. R, Midgley P. A, Reducing the Missing Wedge: High-Resolution Dual Axis Tomography of Inorganic Materials, Ultramicroscopy 106, 994–1000 (2006)

    Google Scholar 

  60. Mohanty P, Ortalan V, Browning ND, Arslan I, Fei Y, Landskron K Direct formation of mesoporous coesite single crystals from periodic mesoporous silica at extreme pressure. Angew Chem (in press)

    Google Scholar 

  61. Evans JE, Hetherington C, Kirkland A, Stahlberg H, Browning ND (2008) Low-dose aberration corrected cryo-electron microscopy for organic specimens. Ultramicroscopy 108:1636–1644

    Article  CAS  Google Scholar 

  62. Ortalan V, Uzun A, Gates BC, Browning ND Atomic-scale direct imaging of single metal atoms and metal clusters in the pores of dealuminated HY zeolite. Nat Nanotechnol (in press)

    Google Scholar 

  63. Buban JP, Ramasse QM, Gipson B, Browning ND, Stahlberg H (2010) Towards low-dose imaging in STEM. J Electron Microsc 59:91–102

    Article  Google Scholar 

  64. Reed BW, Armstrong MR, Browning ND, Campbell GH, Evans JE, LaGrange TB, Masiel DJ (2009) The evolution of ultrafast electron microscope instrumentation. Microsc Microanal 15:272–281

    Article  CAS  Google Scholar 

  65. Neiner D, Okamoto NL, Condron CL, Ramasse QM, Yu P, Browning ND, Kauzlarich SM (2007) Hydrogen encapsulation in a silicon clathrate Type I structure: Na55(H2)2. 15Si46: synthesis and characterization. J Am Chem Soc 129:13857–13862

    Article  CAS  Google Scholar 

  66. Morgan DG, Ramasse QM, Browning ND (2009) Application of two-dimensional crystallography and image processing to atomic resolution Z-contrast images. J Electron Microsc 58:223–244

    Article  CAS  Google Scholar 

  67. Herrera M, Ramasse QM, Morgan DG, Gonzalez D, Pizarro J, Yáñez A, Galindo P, Garcia R, Du M-H, Zhang SB, Hopkinson M, Browning ND (2009) Atomic scale high-angle annular dark field STEM analysis of the N configuration in dilute nitrides of gas. Phys Rev B Condens Matter Mater Phys 80:125211

    Google Scholar 

  68. Perovic DD, Rossouw CJ, Howie A (1993) Imaging elastic strains in HAADF STEM. Ultramicroscopy 52:353–359

    Article  CAS  Google Scholar 

  69. Treacy MMJ, Gibson JM, Short KT, Rice SB (1988) Channeling effects from impurity atoms in the HAADF of the STEM. Ultramicroscopy 26:133–142

    Article  CAS  Google Scholar 

  70. Grillo V, Carlino E, Glas F (2008) Influence of the static atomic displacement on atomic resolution Z-contrast imaging. Phys Rev B Condens Matter Mater Phys 77:054103

    Google Scholar 

  71. Wu X, Robertson MD, Gupta JA, Baribeau JM (2008) Strain contrast of GaNyAs1 − y (y = 0. 029 and 0.045) epitaxial layers on (100) GaAs substrates in annular dark field images. J Phys Condens Matter 20:075215

    Google Scholar 

  72. Pizarro J, Galindo PL, Guerrero E, Yanez A, Guerrero MP, Rosenauer A, Sales DL, Molina SI (2008) Simulation of high angle annular dark field STEM images of large nanostructures. Appl Phys Lett 93:153107

    Article  Google Scholar 

  73. Du MH, Limpijumnong S, Zhang SB (2006) Hydrogen mediated nitrogen clustering in dilute II-V nitrides. Phys Rev Lett 97:075503

    Article  Google Scholar 

  74. Mannhart J, Chaudhari P, Dimos D, Tsuei CC, McGuire TR (1988) Critical currents in [001] grains and across their tilt boundaries in YBa2Cu3O7 films. Phys Rev Lett 61:2476–2479

    Article  CAS  Google Scholar 

  75. Dimos D, Chaudhari P, Mannhart J (1990) Superconducting transport-properties of grain-boundaries in YBa3Cu3O7 bicrystals. Phys Rev B Condens Matter Mater Phys 41:4038

    Google Scholar 

  76. Mathur ND, Burnell G, Isaac SP, Jackson TJ, Teo BS, MacManus-Driscoll JL, Cohen LF, Evetts JE, Blamire MG (1997) Large low-field magnetoresistance in La0. 7Ca0. 3MnO3 induced by artificial grain boundaries. Nature 387:266

    Google Scholar 

  77. Zhang N, Ding WP, Zhong W, Xing DY, Du YW (1997) Tunnel-type giant magnetoresistance in the granular perovskite La0. 85Sr0. 15MnO3. Phys Rev B Condens Matter Mater Phys 56:8138

    Google Scholar 

  78. Heywang W (1964) Resistivity anomaly in doped barium titanate. J Am Ceram Soc 47:484

    Article  CAS  Google Scholar 

  79. Kienzle O, Exner M, Ernst F (1998) Atomistic structure of Σ  = 3, (111) grain boundaries in strontium titanate. Phys Status Solidi A 166:57

    Article  CAS  Google Scholar 

  80. McIntyre PC (2000) Equilibrium point defect and electronic carrier distribution near interfaces in acceptor-doped strontium titanate. J Am Ceram Soc 83:1129

    Article  CAS  Google Scholar 

  81. Lee SB, Sigle W, Ruhle M (2003) Faceting behavior of an asymmetric SrTiO3 Sigma 5 [001] tilt grain boundary close to its defaceting transition. Acta Mater 51:4583

    Article  CAS  Google Scholar 

  82. Zhang ZL, Sigle W, Phillipp F, Ruhle M (2003) Direct atom-resolved imaging of oxides and their grain boundaries. Science 302:846

    Article  CAS  Google Scholar 

  83. De Souza RA, Fleig J, Maier J, Kienzle O, Zhang ZL, Sigle W, Ruhle M (2003) Electrical and structural characterization of a low-angle tilt grain boundary in iron-doped strontium titanate. J Am Ceram Soc 86:922

    Article  Google Scholar 

  84. Saylor DM, El Dasher B, Sano T, Rohrer GS (2004) Distribution of grain boundaries in SrTiO3 as a function of five macroscopic parameters. J Am Ceram Soc 87:670–676

    Article  CAS  Google Scholar 

  85. Park MB, Shih SJ, Cockayne DJH (2007) The preferred CSL misorientation distribution in polycrystalline SrTiO3. J Microsc 227:292

    Article  CAS  Google Scholar 

  86. Sutton AP, Balluffi RW (1995) Interfaces in crystalline materials. Oxford University Press

    Google Scholar 

  87. McGibbon MM, Browning ND, Chisholm MF, McGibbon AJ, Pennycook SJ, Ravikumar V, Dravid VP (1994) Direct determination of grain boundary atomic structure in SrTiO3. Science 266:102–104

    Article  CAS  Google Scholar 

  88. Browning ND, Pennycook SJ, Chisholm MF, McGibbon MM, McGibbon AJ (1995) Observation of structural units at [001] symmetric tilt boundaries in SrTiO3. Interface Sci 2:397–423

    Article  Google Scholar 

  89. McGibbon MM, Browning ND, McGibbon AJ, Chisholm MF, Pennycook SJ (1996) Atomic structures of asymmetric [001] tilt boundaries in srtio3. Philos Mag A 73:625–641

    Article  CAS  Google Scholar 

  90. Browning ND, Pennycook SJ (1996) Direct experimental determination of the atomic structure at internal interfaces. J Phys D 29:1779–1794

    Article  CAS  Google Scholar 

  91. Hull D, Bacon DJ (2001) Introduction to dislocations. Elsevier

    Google Scholar 

  92. Browning ND, Buban JP, Moltaji HO, Duscher G, Pennycook SJ, Rodrigues RP, Johnson K, Dravid VP (1999) The atomic origins of electrical barriers at grain boundaries in SrTiO3. Appl Phys Lett 74:2638–2640

    Article  CAS  Google Scholar 

  93. Klie RF, Browning ND (2000) Atomic scale characterization of a temperature dependence to oxygen vacancy segregation at srtio3 grain boundaries. Appl Phys Lett 77:3737–3739

    Article  CAS  Google Scholar 

  94. Kim M, Duscher G, Browning ND, Pennycook SJ, Sohlberg K, Pantelides ST (2001) Non-stoichiometry and the electrical activity of grain boundaries in srtio3. Phys Rev Lett 86:4056–4069

    Article  CAS  Google Scholar 

  95. Buban JP, Chi M, Masiel DJ, Bradley JP, Jiang B, Stahlberg H, Browning ND (2009) Structural variability of edge dislocations in a SrTiO3 low-angle [001] tilt grain boundary. J Mater Res 24:2191–2199

    Article  CAS  Google Scholar 

  96. Technology Vision 2020, The U.S. Chemical Industry, published by the American Chemical Society, American Institute of Chemical Engineers, the Chemical Manufacturers Association, the Council for Chemical research, and the Synthetic Organic Chemical Manufacturers Association (1996)

    Google Scholar 

  97. Catalysis Looks to the Future (1992) Report by panel on new directions in catalytic science and technology, Board on Chemical Sciences and Technology. National Research Council, National Academy Press, Washington

    Google Scholar 

  98. Critical Technologies (1992) The role of chemistry and chemical engineering, report by committee on critical technologies: the role of chemistry and chemical engineering in maintaining and strengthening american technology, board on chemical sciences and technology. National Academy Press, Washington

    Google Scholar 

  99. Batson PE (2008) Motion of gold atoms on carbon in aberration corrected STEM. Microsc Microanal 14:89–97

    CAS  Google Scholar 

  100. Reed BW, Morgan DG, Okamoto NL, Kulkarni A, Gates BC, Browning ND (2009) Validation and generalization of a method for precise size measurements of metal nanoclusters. Ultramicroscopy 110:48–60

    Article  CAS  Google Scholar 

  101. Okamoto NL, Reed BW, Mehraeen S, Kulkarni A, Morgan DG, Gates BC, Browning ND (2008) Determination of nanocluster sizes from dark-field scanning transmission electron microscopy images. J Phys Chem C 112:1759–1763

    Article  CAS  Google Scholar 

  102. Johansson M, Lindén AA, Bäckvall JE (2005) Osmium catalyzed dihydroxylation of alkenes by H2O2 in room temperature ionic liquid co-catalyzed by VO(acac)(2) or MeReO3. J Organomet Chem 690:3614

    Article  CAS  Google Scholar 

  103. Bhirud VA, Iddir H, Browning ND, Gates BC (2005) Intact and fragmented triosmium clusters on MgO: characterization by X-ray absorption spectroscopy and high-resolution transmission electron microscopy. J Phys Chem B 109:12738–12741

    Article  CAS  Google Scholar 

  104. Lamb H. H and Gates B. C, Characterization of decaosmium carbide carbonyl clusters supported on MgO, Journal of Physical Chemistry 96, 1099–1105 (1992)

    Google Scholar 

  105. Allard LF, Panjabi GA, Salvi SN, Gates BC (2002) Imaging of nearly uniform Os5C clusters dispersed on MgO powder. Nano Lett 2:381–384

    Article  CAS  Google Scholar 

  106. Lamb HH, Gates BC (1992) Characterization of decaosmium carbide carbonyl clusters supported on MgO. J Phys Chem 96:1099–1105

    Article  CAS  Google Scholar 

  107. Jackson PF, Johnson BFG, Lewis J, Nelson WJH (1982) The synthesis of Te cluster dianion by pyrolysis—X-ray structure analysis of [N(PPH3)2]2[Os10C(CO)24] and [Os5C(CO)14H(NC5H4)]. J Chem Soc Dalton Trans 10:2099–2107

    Article  Google Scholar 

  108. Corey ER, Dahl LF (1962) Molecular and crystal structure of Os3(CO)12. Inorg Chem 1:521

    Article  CAS  Google Scholar 

  109. NIST Standard Reference Database 64: NIST Electron Elastic-Scattering Cross-Section Database, V. 3.1, 2003 (copyright U.S. Secretary of Commerce). http://www.nist.gov/srd/ (accessed July 4, 2007)

Download references

Acknowledgments

This work was supported in part by the U.S. Department of Energy under grant number DE-FG02–03ER46057 and by the U.S. National Science Foundation under grant number CTS-0500511. Aspects of this work were also performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory and supported by the Office of Science, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, of the U.S. Department of Energy under Contract DE-AC52–07NA27344. Experiments were also performed at two DOE user facilities: the National Center for Electron Microscopy (NCEM) at Lawrence Berkeley National Laboratory, and the SHaRE facility at Oak Ridge National Laboratory. The Clathrate work described in this paper was performed in collaboration with D. Neiner and S. M. Kauzlarich, the work on size distributions in catalysts was performed with B. C. Gates, and A. Kulkarni, the work on N-doped GaAs was performed in collaboration with D. Gonzalez, J. Pizarro, A. Yáñez, P. Galindo, R. Garcia, M.-H. Du, S.B. Zhang, and M. Hopkinson, and the work on SrTiO3 grain boundaries was performed with J. P. Bradley and B. Jiang.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. D. Browning .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Browning, N.D. et al. (2012). The Application of Scanning Transmission Electron Microscopy (STEM) to the Study of Nanoscale Systems. In: Vogt, T., Dahmen, W., Binev, P. (eds) Modeling Nanoscale Imaging in Electron Microscopy. Nanostructure Science and Technology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-2191-7_2

Download citation

Publish with us

Policies and ethics