Skip to main content

Magnetoreception

  • Chapter
Sensing in Nature

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 739))

Abstract

Animals can use the direction of the magnetic field as a compass and the intensity of the magnetic field as a component of the navigational ‘map’. Two fundamentally different mechanisms of magnetoreception have been discussed: (1) light-dependent reactions in specialized photopigments lead to radical pairs, with the ratio singlet/ triplet depending on the molecule’s alignment with respect to the ambient magnetic field and (2) reactions involving small crystals of magnetite, a specific iron oxide of biogen origin. The first mechanism provides birds and possibly amphibians and insects with compass information; the second, which can theoretically provide animals with information on direction and intensity, appears to mediate intensity information in birds and compass information e.g., in mammals. Little is known about the magnetoreception mechanisms in other animals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baker RR. Human Navigation and Magnetoreception. Manchester, New York: Manchester University Press, 1989.

    Google Scholar 

  2. Skiles DD. The geomagnetic field: its nature, history and biological relevance. In: Kirschvink JL, Jones DS, MacFadden BJ, eds. Magnetite Biomineralization and Magnetoreception in Organisms. New York, London: Plenum Press, 1985:43–102.

    Chapter  Google Scholar 

  3. Wiltschko R, Wiltschko W. Magnetic Orientation in Animals. Berlin, Heidelberg, New York: Springer Verlag, 1995.

    Book  Google Scholar 

  4. Wiltschko W, Wiltschko R. Magnetic orientation and magnetoreception in birds and other animals. J Comp Physiol A 2005; 191:675–693.

    Article  Google Scholar 

  5. Kalmijn AJ. Electric and magnetic sensory world of sharks, skates and rays. In: Hodgson FS, Mathewson RF, eds. Sensory Biology of Sharks, Skates and Rays. Arlington, VA: Office Naval Res, 1978:507–528.

    Google Scholar 

  6. Ritz T, Adem S, Schulten K. A model for vision-based magnetoreception in birds. Biophys J 2000; 78:707–718.

    Article  PubMed  CAS  Google Scholar 

  7. Wiltschko W, Wiltschko R. Disorientation of inexperienced young pigeons after transportation in total darkness. Nature 1981; 291:433–434.

    Article  Google Scholar 

  8. Wiltschko R, Stapput K, Thalau P et al. Directional orientation of birds by the magnetic field under different light conditions. J R Soc Interface 2010; 7(Focus 2):S163–S177.

    Article  PubMed  Google Scholar 

  9. Phillips JB, Borland SC. Magnetic compass orientation is eliminated under near-infrared light in the eastern red-spotted newt notophthalmus viridescens. Anim Behav 1992; 44:796–797.

    Article  Google Scholar 

  10. Phillips JB, Jorge PE, Muheim R. Light-dependent magnetic compass orientation in amphibians and insects: candidate receptors and candidate molecule mechanisms. J R Soc Interface 2010; 7(Focus 2):S241–S256.

    Article  PubMed  CAS  Google Scholar 

  11. Phillips JB, Borland SC, Freake M et al. ‘Fixed-axis’ magnetic orientation by an amphibian: nonshoreward-directed compass orientation, misdirected homing or positioning a magnetite-based map detector in a consistent alignment relative to the magnetic field? J Exp Biol 2002; 205:3903–3914.

    PubMed  Google Scholar 

  12. Lohmann KJ, Lohmann CMF. A light-independent magnetic compass in the leatherback sea turtle. Biol Bull 1993; 185:149–151.

    Article  Google Scholar 

  13. Ritz T, Thalau P, Phillips JB et al. Resonance effects indicate a radical-pair mechanism for avian magnetic compass. Nature 2004; 429:177–180.

    Article  PubMed  CAS  Google Scholar 

  14. Vácha M, Půžová T, Kvícalova M. Radiofrequency magnetic fields disrupt magnetoreception in American cockroach. J Exp Biol 2009; 212:3473–3477.

    Article  PubMed  Google Scholar 

  15. Sancar A. Structure and function of DNA photolyase and cryptochrome blue-light photoreceptors. Chem Rev 2003; 103:2203–2237.

    Article  PubMed  CAS  Google Scholar 

  16. Liedvogel M, Mouritsen H. Cryptochromes—a potential magnetoreceptor: what do we know and what do we want to know? J R Soc Interface 2010; 7(Focus 2):S147–S162.

    Article  PubMed  CAS  Google Scholar 

  17. Ritz T, Wiltschko R, Hore PJ et al. Magnetic compass of birds is based on a molecule with optimal directional sensitivity. Biophys J 2009; 96:3451–345.

    Article  PubMed  CAS  Google Scholar 

  18. Gegear RJ, Casselman A, Waddell S et al. Cryptochrome mediates light-dependent magnetosensitiviy in Drosophila. Nature 2008; 454:1014–1019.

    Article  PubMed  CAS  Google Scholar 

  19. Wiltschko W, Wiltschko R. Magnetoreception in birds: two receptors for two different tasks. J Ornithol 2007; 148(Suppl 1):S61–S76.

    Article  Google Scholar 

  20. Phillips JB, Deutschlander ME, Freake MJ et al. The role of extraocular photoreceptors in newt magnetic compass orientation: parallels between light-dependent magnetoreception and polarized light detection in vertebrates. J Exp Biol 2001; 204:2543–2552.

    PubMed  CAS  Google Scholar 

  21. Semm P, Nohr D, Demaine C et al. Neural basis of the magnetic compass: interaction of visual, magnetic and vestibular inputs in the pigeon’s brain. J Comp Physiol 1984;155:283–288.

    Article  Google Scholar 

  22. Güntürkün O. Morphological asymmetries of the tectum opticum in the pigeon. Exp Brain Res 1997; 116:561–566.

    Article  PubMed  Google Scholar 

  23. Zapka M, Heyers D, Hein CM et al. Visual but not trigeminal mediation of magnetic compass information in a mirgatory birds. Nature 2009; 462:1274–1277.

    Article  Google Scholar 

  24. Kirschvink JL, Jones DS, MacFadden BJ, eds. Magnetite Biomineralization and Magnetoreception in Organisms. New York, London: Plenum Press, 1985.

    Google Scholar 

  25. Blakemore RP. Magnetotactic bacteria. Science 1975; 190:377–379.

    Article  PubMed  CAS  Google Scholar 

  26. Shcherbakov VP, Winklhofer M. The osmotic magnetometer: a new model for magnetite-based magnetoreceptors in animals. Eur Biophys J 1999; 28:380–392.

    Article  CAS  Google Scholar 

  27. Walker MM, Diebel CE, Haugh CV et al. Structure and function of the vertebrte magnetic sense. Nature 1997; 390:371–376.

    Article  PubMed  CAS  Google Scholar 

  28. Winklhofer W, Kirschvink JL. A quantitative assessment of torque-transducer models for magnetoreception. J R Soc Interface 2010; 7(Focus 2):S273–S289.

    Article  PubMed  CAS  Google Scholar 

  29. Solov’yov IA, Greiner W. Theoretical analysis of an iron mineral-based magnetoreceptor model in birds. Biophys J 2007; 93:1493–1509.

    Article  CAS  Google Scholar 

  30. Fleissner G, Holtkamp-Rotzler E, Hanzlik M et al. Ultrastructural analysis of a putative magnetoreceptor in the beak of homing pigeons. J Comp Neurol 2003; 458:350–360.

    Article  PubMed  CAS  Google Scholar 

  31. Falkenberg G, Fleissner G, Schuchardt K et al. Avian magnetoreception: elaborate iron mineral containing dentrites in the upper beak seem to be a common feature of birds. PLoS One 2010; 5:e9231.

    Article  PubMed  Google Scholar 

  32. Semm P, Beason RC. Responses to small magnetic variations by the trigeminal system of the bobolink. Brain Res Bull 1990; 25:735–740.

    Article  PubMed  CAS  Google Scholar 

  33. Heyers D, Zapka M, Hoffmeister M et al. Magnetic field changes activate the trigeminal brainstem complex in a migratory birds. Proc Natl Acad Sci USA 2010; doi: 10.1073/pnas.0907068107.

    Google Scholar 

  34. Němec P, Altmann J, Marhold S et al. Neuroanatomy of magnetoreception: the superior colliculus involved in magnetic orientation in a mammal. Science 2001; 294:366–368.

    Article  PubMed  Google Scholar 

  35. Davila AF, Fleissner G, Winklhofer M. A new model for a magnetoreceptor in homing pigeons based on interacting clusters of superparamagnetic magnetite. Phys Chem Earth 2003; 28:647–652.

    Article  Google Scholar 

  36. Marhold S, Burda H, Kreilos I et al. Magnetic orientation in the common mole-rat from Zambia. In: Orientation and Navigation—Birds, Humans and other Animals. Oxford: Royal Instit of Navigation 1997; 5–1–5–9.

    Google Scholar 

  37. Holland RA, Kirschvink JL, Doak TG et al. Bats use magnetite to detect the earth’s magnetic field. Plos One 2008; 3:e1676.

    Article  PubMed  Google Scholar 

  38. Irwin WP, Lohmann KJ. Disruption of magnetic orientation in hatchling loggerhead turtles by pulsed magnetic fields. J Comp Physiol A 2005; 191:475–480.

    Article  Google Scholar 

  39. Wiltschko W, Munro U, Ford H et al. Avian orientation: the pulse effect is mediated by the magnetite receptors in the upper beak. Proc R Soc B 2009; 276:2227–2232.

    Article  PubMed  Google Scholar 

  40. Kirschvink JL, Walker MM. Particle-size considerations for magnetite-based magnetoreceptors. In: Kirschvink JL, Jones DS, MacFadden BJ, eds. Magnetite Biomineralization and Magnetoreception in Organisms. New York, London: Plenum Press, 1985:243–256.

    Chapter  Google Scholar 

  41. Viguier C. Le sens de l’orientation et ses organes chez les animaux et chez l’homme. Revue Philisophique de la France et de L Etranger 1882; 14:1–36.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roswitha Wiltschko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Wiltschko, R., Wiltschko, W. (2012). Magnetoreception. In: López-Larrea, C. (eds) Sensing in Nature. Advances in Experimental Medicine and Biology, vol 739. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-1704-0_8

Download citation

Publish with us

Policies and ethics