Skip to main content

Blood Sphingolipids in Homeostasis and Pathobiology

  • Chapter
Sphingolipids and Metabolic Disease

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 721))

Abstract

Sphingolipids have emerged as key signaling molecules involved in the regulation of a variety of cellular functions including cell growth and differentiation, proliferation and apoptotic cell death. Sphingolipids in blood constitute part of the circulating lipoprotein particles (HDL, LDL and VLDL), carried by serum albumin and also present in blood cells and platelets. Recent lipidomic and proteomic studies of plasma lipoproteins have provided intriguing data concerning the protein and lipid composition of lipoproteins in the context of disease. Sphingolipids have been implicated in several diseases such as cancer, obesity, atherosclerosis and sphingolipidoses; however, efforts addressing blood sphingolipidomics are still limited. The development of methods to determine levels of circulating bioactive sphingolipids in humans and validation of these methods to be a routine clinical laboratory test could be a pioneering approach to diagnose disease in the population. This approach would probably evolve to be analogous in implication to determining “good” and “bad” cholesterol and triglyceride levels in lipoprotein classes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cuvillier O, Pirianov G, Kleuser B et al. Suppression of ceramide-mediated programmed cell death by sphingosine-1-phosphate. Nature 1996; 381(6585):800–803.

    Article  PubMed  CAS  Google Scholar 

  2. Hannun YA. Functions of ceramide in coordinating cellular responses to stress. Science 1996; 274(5294): 1855–1859.

    Article  PubMed  CAS  Google Scholar 

  3. Mathias S, Pena LA, Kolesnick RN. Signal transduction of stress via ceramide. Biochem J 1998; 335 (Pt 3):465–480.

    PubMed  CAS  Google Scholar 

  4. Spiegel S, Merrill AH Jr.Sphingolipid metabolism and cell growth regulation. FASEB J 1996; 10(12):1388–1397.

    PubMed  CAS  Google Scholar 

  5. Merrill AH Jr. De novo sphingolipid biosynthesis: a necessary, but dangerous, pathway. J Biol Chem 2002; 277(29):25843–25846.

    Article  PubMed  CAS  Google Scholar 

  6. Hannun YA, Obeid LM. Ceramide and the eukaryotic stress response. Biochem Soc Trans 1997; 25(4):1171–1175.

    PubMed  CAS  Google Scholar 

  7. Vesper H, Schmelz EM, Nikolova-Karakashian MN et al. Sphingolipids in food and the emerging importance of sphingolipids to nutrition. J Nutr 1999; 129(7):1239–1250.

    PubMed  CAS  Google Scholar 

  8. Ichi I, Nakahara K, Kiso K et al. Effect of dietary cholesterol and high fat on ceramide concentration in rat tissues. Nutrition 2007; 23(7–8):570–574.

    Article  PubMed  CAS  Google Scholar 

  9. Katsikas H, Wolf C. Blood sphingomyelins from two European countries. Biochim Biophys Acta 1995; 1258(2):95–100.

    PubMed  Google Scholar 

  10. Ozbayraktar FB, Ulgen KO. Molecular facets of sphingolipids: mediators of diseases. Biotechnol J 2009; 4(7):1028–1041.

    Article  PubMed  CAS  Google Scholar 

  11. Vance DE, Sweeley CC. Quantitative determination of the neutral glycosyl ceramides in human blood. J Lipid Res 1967; 8(6):621–630.

    PubMed  CAS  Google Scholar 

  12. Hammad SM, Crellin HG, Wu BX et al. Dual and distinct roles for sphingosine kinase 1 and sphingosine 1 phosphate in the response to inflammatory stimuli in RAW macrophages. Prostaglandins Other Lipid Mediat 2008; 85(3–4):107–114.

    Article  PubMed  CAS  Google Scholar 

  13. Verheij M, Bose R, Lin XH et al. Requirement for ceramide-initiated SAPK/JNK signalling in stress-induced apoptosis. Nature 1996; 380(6569):75–79.

    Article  PubMed  CAS  Google Scholar 

  14. Augé N, Nikolova-Karakashian M, Carpentier S et al. Role of sphingosine 1-phosphate in the mitogenesis induced by oxidized low density lipoprotein in smooth muscle cells via activation of sphingomyelinase, ceramidase and sphingosine kinase. J Biol Chem 1999; 274(31):21533–21538.

    Article  PubMed  Google Scholar 

  15. Brinkmann V, Lynch KR. FTY720: targeting G-protein-coupled receptors for sphingosine 1-phosphate in transplantation and autoimmunity. Curr Opin Immunol 2002; 14(5):569–575.

    Article  PubMed  CAS  Google Scholar 

  16. Bielawski J, Pierce JS, Snider J et al. Comprehensive quantitative analysis of bioactive sphingolipids by high-performance liquid chromatography-tandem mass spectrometry. Methods Mol Biol 2009; 579:443–467.

    Article  PubMed  CAS  Google Scholar 

  17. Hammad SM, Pierce JS, Soodavar F et al. Blood sphingolipidomics in healthy humans: Impact of sample collection methodology. J Lipid Res 2010.

    Google Scholar 

  18. Jeyarajah EJ, Cromwell WC, Otvos JD. Lipoprotein particle analysis by nuclear magnetic resonance spectroscopy. Clin Lab Med 2006; 26(4):847–870.

    Article  PubMed  Google Scholar 

  19. Murata N, Sato K, Kon J et al. Interaction of sphingosine 1-phosphate with plasma components, including lipoproteins, regulates the lipid receptor-mediated actions. Biochem J 2000; 352 Pt 3:809–815.

    Article  PubMed  CAS  Google Scholar 

  20. Wiesner P, Leidl K, Boettcher A et al. Lipid profiling of FPLC-separated lipoprotein fractions by electrospray ionization tandem mass spectrometry. J Lipid Res 2009; 50(3):574–585.

    Article  PubMed  CAS  Google Scholar 

  21. Pyne S, Pyne NJ. Sphingosine 1-phosphate signalling in mammalian cells. Biochem J 2000; 349(Pt2):385–402.

    Article  PubMed  CAS  Google Scholar 

  22. Hla T. Sphingosine 1-phosphate receptors. Prostaglandins 2001; 64(1–4):135–142.

    PubMed  CAS  Google Scholar 

  23. Argraves KM, Gazzolo PJ, Groh EM et al. High density lipoprotein-associated sphingosine 1-phosphate promotes endothelial barrier function. J Biol Chem 2008; 283(36):25074–25081.

    Article  PubMed  CAS  Google Scholar 

  24. Bornfeldt KE, Graves LM, Raines EW et al. Sphingosine-1-phosphate inhibits PDGF-induced chemotaxis of human arterial smooth muscle cells: spatial and temporal modulation of PDGF chemotactic signal transduction. J Cell Biol 1995; 130(1):193–206.

    Article  PubMed  CAS  Google Scholar 

  25. Kimura T, Watanabe T, Sato K et al. Sphingosine 1-phosphate stimulates proliferation and migration of human endothelial cells possibly through the lipid receptors, Edg-1 and Edg-3. Biochem J 2000; 348 Pt 1:71–76.

    Article  PubMed  CAS  Google Scholar 

  26. Lee MJ, Thangada S, Claffey KP etal. Vascular endothelial cell adherens junction assembly and morphogenesis induced by sphingosine-1-phosphate. Cell 1999; 99(3):301–312.

    Article  PubMed  CAS  Google Scholar 

  27. Yatomi Y, Yamamura S, Ruan F et al. Sphingosine 1-phosphate induces platelet activation through an extracellular action and shares a platelet surface receptor with lysophosphatidic acid. J Biol Chem 1997; 272(8):5291–5297.

    Article  PubMed  CAS  Google Scholar 

  28. Kontush A, Therond P, Zerrad A et al. Preferential sphingosine-1-phosphate enrichment and sphingomyelin depletion are key features of small dense HDL3 particles: relevance to antiapoptotic and antioxidative activities. Arterioscler Thromb Vasc Biol 2007; 27(8):1843–1849.

    Article  PubMed  CAS  Google Scholar 

  29. Rodríguez C, González-Diez M, Badimon L et al. Sphingosine-1-phosphate: A bioactive lipid that confers high-density lipoprotein with vasculoprotection mediated by nitric oxide and prostacyclin. Thromb Haemost 2009; 101(4):665–673.

    PubMed  Google Scholar 

  30. Lucke S, Levkau B. Endothelial functions of sphingosine-1-phosphate. Cell Physiol Biochem 2010; 26(1):87–96.

    Article  PubMed  CAS  Google Scholar 

  31. Nixon GF. Sphingolipids in inflammation: pathological implications and potential therapeutic targets. Br J Pharmacol 2009; 158(4):982–993.

    Article  PubMed  CAS  Google Scholar 

  32. Okajima F. Plasma lipoproteins behave as carriers of extracellular sphingosine 1-phosphate: is this an atherogenic mediator or an anti-atherogenic mediator? Biochim Biophys Acta 2002; 1582(1–3): 132–137.

    PubMed  CAS  Google Scholar 

  33. Deutschman DH, Carstens JS, Klepper RL et al. Predicting obstructive coronary artery disease with serum sphingosine-1-phosphate. Am Heart J 2003; 146(1):62–68.

    Article  PubMed  CAS  Google Scholar 

  34. Lee MH, Hammad SM, Semler AJ et al. HDL3, but not HDL2, stimulates plasminogen activator inhibitor-1 release from adipocytes—the role of sphingosine-1-phosphate. J Lipid Res 2010.

    Google Scholar 

  35. Rader DJ. Regulation of reverse cholesterol transport and clinical implications. Am J Cardiol 2003; 92(4A):42J–49J.

    Article  PubMed  CAS  Google Scholar 

  36. Sparks DL, Davidson WS, Lund-Katz S et al. Effects of the neutral lipid content of high density lipoprotein on apolipoprotein A-I structure and particle stability. J Biol Chem 1995; 270(45):26910–26917.

    Article  PubMed  CAS  Google Scholar 

  37. Curtiss LK, Bonnet DJ, Rye KA. The conformation of apolipoprotein A-I in high-density lipoproteins is influenced by core lipid composition and particle size: a surface plasmon resonance study. Biochemistry 2000;39(19):5712–5721.

    Article  PubMed  CAS  Google Scholar 

  38. Vedhachalam C, Chetty PS, Nickel M et al. Influence of apolipoprotein (APO) A-I structure on nascent high density lipoprotein (HDL) particle size distribution. J Biol Chem 2010.

    Google Scholar 

  39. Krauss RM. Lipoprotein subfractions and cardiovascular disease risk. Curr Opin Lipidol 2010; 21(4): 305–311.

    Article  PubMed  CAS  Google Scholar 

  40. Sattler KJ, Elbasan S, Keul P et al. Sphingosine 1-phosphate levels in plasma and HDL are altered in coronary artery disease. Basic Res Cardiol 2010.

    Google Scholar 

  41. Camerer E, Regard JB, Cornelissen I et al. Sphingosine-1-phosphate in the plasma compartment regulates basal and inflammation-induced vascular leak in mice. J Clin Invest 2009; 119(7):1871–1879.

    PubMed  CAS  Google Scholar 

  42. Pappu R, Schwab SR, Cornelissen I et al. Promotion of lymphocyte egress into blood and lymph by distinct sources of sphingosine-1-phosphate. Science 2007; 316(5822):295–298.

    Article  PubMed  CAS  Google Scholar 

  43. Venkataraman K, Lee YM, Michaud J et al. Vascular endothelium as a contributor of plasma sphingosine 1-phosphate. Circ Res 2008; 102(6):669–676.

    Article  PubMed  CAS  Google Scholar 

  44. Yang L, Yatomi Y, Miura Y et al. Metabolism and functional effects of sphingolipids in blood cells. Br J Haematol 1999; 107(2):282–293.

    Article  PubMed  CAS  Google Scholar 

  45. Yatomi Y, Igarashi Y, Yang L et al. Sphingosine 1-phosphate, a bioactive sphingolipid abundantly stored in platelets, is a normal constituent of human plasma and serum. J Biochem 1997; 121(5):969–973.

    PubMed  CAS  Google Scholar 

  46. Spiegel S, Milstien S. Sphingosine-1-phosphate: an enigmatic signalling lipid. Nat Rev Mol Cell Biol 2003;4(5):397–407.

    Article  PubMed  CAS  Google Scholar 

  47. Hammad SM, Taha TA, Nareika A et al. Oxidized LDL immune complexes induce release of sphingosine kinase in human U937 monocytic cells. Prostaglandins Other Lipid Mediat 2006; 79(1–2): 126–140.

    Article  PubMed  CAS  Google Scholar 

  48. Kumpula LS, Kumpula JM, Taskinen MR et al. Reconsideration of hydrophobic lipid distributions in lipoprotein particles. Chem Phys Lipids 2008; 155(1):57–62.

    Article  PubMed  CAS  Google Scholar 

  49. Kinnunen PK, Holopainen JM. Sphingomyelinase activity of LDL: a link between atherosclerosis, ceramide and apoptosis? Trends Cardiovasc Med 2002; 12(1):37–42.

    Article  PubMed  CAS  Google Scholar 

  50. Heikela M, Vattulainen I, Hyvonen MT. Atomistic simulation studies of cholesteryl oleates: model for the core of lipoprotein particles. Biophys J 2006; 90(7):2247–2257.

    Article  PubMed  CAS  Google Scholar 

  51. Sysi-aho M, Vehtari A, Velagapudi VR et al. Exploring the lipoprotein composition using Bayesian regression on serum lipidomic profiles. Bioinformatics 2007; 23(13):i519–i528.

    Article  CAS  Google Scholar 

  52. Bartke N, Hannun YA. Bioactive sphingolipids: metabolism and function. J Lipid Res 2009; 50 Suppl: S91–S96.

    Article  PubMed  Google Scholar 

  53. Cowart LA. Sphingolipids: players in the pathology of metabolic disease. Trends Endocrinol Metab 2009; 20(1):34–42.

    Article  PubMed  CAS  Google Scholar 

  54. Lahiri S, Futerman AH. The metabolism and function of sphingolipids and glycosphingolipids. Cell Mol Life Sci 2007; 64(17):2270–2284.

    Article  PubMed  CAS  Google Scholar 

  55. Liliom K, Sun G, Bünemann M et al. Sphingosylphosphocholine is a naturally occurring lipid mediator in blood plasma: a possible role in regulating cardiac function via sphingolipid receptors. Biochem J 2001;355(Pt 1):189–197.

    Article  PubMed  CAS  Google Scholar 

  56. Merrill AH Jr, Stokes TH, Momin A et al. Sphingolipidomics: a valuable tool for understanding the roles of sphingolipids in biology and disease. J Lipid Res 2009; 50 Suppl: S97–S102.

    Article  PubMed  Google Scholar 

  57. Wymann MP, Schneiter R. Lipid signalling in disease. Nat Rev Mol Cell Biol 2008; 9(2):162–176.

    Article  PubMed  CAS  Google Scholar 

  58. Meyer zu Heringdorf D, Jakobs KH. Lysophospholipid receptors: signalling, pharmacology and regulation by lysophospholipid metabolism. Biochim Biophys Acta 2007; 1768(4):923–940.

    Article  PubMed  CAS  Google Scholar 

  59. Mueller RB, Sheriff A, Gaipl US et al. Attraction of phagocytes by apoptotic cells is mediated by lysophosphatidylcholine. Autoimmunity 2007; 40(4):342–344.

    Article  PubMed  CAS  Google Scholar 

  60. Tani M, Ito M, Igarashi Y. Ceramide/sphingosine/sphingosine 1-phosphate metabolism on the cell surface and in the extracellular space. Cell Signal 2007; 19(2):229–237.

    Article  PubMed  CAS  Google Scholar 

  61. Kolter T, Proia RL, Sandhoff K. Combinatorial ganglioside biosynthesis. J Biol Chem 2002; 277(29): 25859–25862.

    Article  PubMed  CAS  Google Scholar 

  62. Hannun YA, Obeid LM. The Ceramide-centric universe of lipid-mediated cell regulation: stress encounters of the lipid kind. J Biol Chem 2002; 277(29):25847–25850.

    Article  PubMed  CAS  Google Scholar 

  63. Hannun YA, Obeid LM. Principles of bioactive lipid signalling: lessons from sphingolipids. Nat Rev Mol Cell Biol 2008; 9(2): 139–150.

    Article  PubMed  CAS  Google Scholar 

  64. Pfeiffer A, Böttcher A, Orsó E et al. Lipopolysaccharide and ceramide docking to CD14 provokes ligand-specific receptor clustering in rafts. Eur J Immunol 2001; 31(11):3153–3164.

    Article  PubMed  CAS  Google Scholar 

  65. Fujiwaki T, Yamaguchi S, Tasaka M et al. Application of delayed extraction-matrix-assisted laser desorption ionization time-of-flight mass spectrometry for analysis of sphingolipids in pericardial fluid, peritoneal fluid and serum from Gaucher disease patients. J Chromatogr B Analyt Technol Biomed Life Sci 2002; 776(1):115–123.

    Article  PubMed  CAS  Google Scholar 

  66. Fujiwaki T, Tasaka M, Takahashi N et al. Quantitative evaluation of sphingolipids using delayed extraction matrix-assisted laser desorption ionization time-of-flight mass spectrometry with sphingosylphosphorylcholine as an internal standard. Practical application to cardiac valves from a patient with Fabry disease. J Chromatogr B Analyt Technol Biomed Life Sci 2006; 832(1):97–102.

    Article  PubMed  CAS  Google Scholar 

  67. Abnet CC, Borkowf CB, Qiao YL et al. A cross-sectional study of human serum sphingolipids, diet and physiologic parameters. J Nutr 2001; 131(10):2748–2752.

    PubMed  CAS  Google Scholar 

  68. Abnet CC, Borkowf CB, Qiao YL et al. Sphingolipids as biomarkers of fumonisin exposure and risk of esophageal squamous cell carcinoma in china. Cancer Causes Control 2001; 12(9):821–828.

    Article  PubMed  CAS  Google Scholar 

  69. Gorska M, Dobrzyn A, Baranowski M. Concentrations of sphingosine and sphinganine in plasma of patients with type 2 diabetes. Med Sci Monit 2005; 11(1):CR35–CR38.

    PubMed  CAS  Google Scholar 

  70. Ribar S, Mesaric M, Sedic M. Sphingoid bases as possible diagnostic parameters. Croat Med J 2003; 44(2):165–170.

    PubMed  Google Scholar 

  71. Lieser B, Liebisch G, Drobnik W et al. Quantification of sphingosine and sphinganine from crude lipid extracts by HPLC electrospray ionization tandem mass spectrometry. J Lipid Res 2003; 44(11):2209–2216.

    Article  PubMed  CAS  Google Scholar 

  72. Schlitt A, Hojjati MR, von Gizycki H et al. Serum sphingomyelin levels are related to the clearance of postprandial remnant-like particles. J Lipid Res 2005; 46(2): 196–200.

    Article  PubMed  CAS  Google Scholar 

  73. Jiang XC, Paultre F, Pearson TA et al. Plasma sphingomyelin level as a risk factor for coronary artery disease. Arterioscler Thromb Vasc Biol 2000; 20(12):2614–2618.

    Article  PubMed  CAS  Google Scholar 

  74. Nelson JC, Jiang XC, Tabas I et al. Plasma sphingomyelin and subclinical atherosclerosis: findings from the multi-ethnic study of atherosclerosis. Am J Epidemiol 2006; 163(10):903–912.

    Article  PubMed  Google Scholar 

  75. Park TS, Panek RL, Rekhter MD et al. Modulation of lipoprotein metabolism by inhibition of sphingomyelin synthesis in ApoE knockout mice. Atherosclerosis 2006; 189(2):264–272.

    Article  PubMed  CAS  Google Scholar 

  76. Hojjati MR, Li Z, Zhou H et al. Effect of myriocin on plasma sphingolipid metabolism and atherosclerosis in ApoE-deficient mice. J Biol Chem 2005; 280(11):10284–10289.

    Article  PubMed  CAS  Google Scholar 

  77. Dong J, Liu J, Lou B et al. Adenovirus-mediated overexpression of sphingomyelin synthases 1 and 2 increases the atherogenic potential in mice. J Lipid Res 2006; 47(6):1307–1314.

    Article  PubMed  CAS  Google Scholar 

  78. Drobnik W, Liebisch G, Audebert FX et al. Plasma ceramide and lysophosphatidylcholine inversely correlate with mortality in sepsis patients. J Lipid Res 2003; 44(4):754–761.

    Article  PubMed  CAS  Google Scholar 

  79. Kontush A, Chapman MJ. Lipidomics as a tool for the study of lipoprotein metabolism. Curr Atheroscler Rep 2010; 12(3):194–201.

    Article  PubMed  CAS  Google Scholar 

  80. Schittmayer M, Birner-Gruenberger R. Functional proteomics in lipid research: lipases, lipid droplets and lipoproteins. J Proteomics 2009; 72(6):1006–1018.

    Article  PubMed  CAS  Google Scholar 

  81. Alonzi T, Mancone C, Amicone L et al. Elucidation of lipoprotein particles structure by proteomic analysis. Expert Rev Proteomics 2008; 5(1):91–104.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Landes Bioscience and Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Hammad, S.M. (2011). Blood Sphingolipids in Homeostasis and Pathobiology. In: Cowart, L.A. (eds) Sphingolipids and Metabolic Disease. Advances in Experimental Medicine and Biology, vol 721. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-0650-1_4

Download citation

Publish with us

Policies and ethics