Skip to main content

Role of Epigenetics in Cancer Initiation and Progression

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 720))

Abstract

The epigenome which comprises DNA methylation, histone modifications, chromatin structures and non-coding RNAs controls gene expression patterns. In cancer cells, there are aberrant changes in the epigenome. The question in cancer epigenetics is that whether these changes are the cause of cell transformation, or rather the consequence of it. We will discuss the epigenetic phenomenon in cancer, as well as the recent interests in the epigenetic reprogramming events, and their implications in the cancer stem cell theory. We will also look at the progression of cancers as they become more aggressive, with focus on the role of epigenetics in tumor metastases exemplified with the urokinase plasminogen activator (uPA) system. Last but not least, with therapeutics intervention in mind, we will highlight the importance of balance in the design of epigenetic based anti-cancer therapeutic strategies.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Board E (2008) Moving ahead with an international human epigenome project. Nature 454:711–715

    Article  CAS  Google Scholar 

  2. Reik W, Dean W, Walter J (2001) Epigenetic reprogramming in mammalian development. Science 293:1089–1093

    Article  PubMed  CAS  Google Scholar 

  3. McGowan PO, Sasaki A, D’Alessio AC, Dymov S, Labonte B et al (2009) Epigenetic regulation of the glucocorticoid receptor in human brain associates with childhood abuse. Nat Neurosci 12:342–348

    Article  PubMed  CAS  Google Scholar 

  4. Wolff GL, Kodell RL, Moore SR, Cooney CA (1998) Maternal epigenetics and methyl supplements affect agouti gene expression in Avy/a mice. FASEB J 12:949–957

    PubMed  CAS  Google Scholar 

  5. Jaenisch R, Bird A (2003) Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat Genet 33(Suppl):245–254

    Article  PubMed  CAS  Google Scholar 

  6. Brown SE, Szyf M (2008) Dynamic epigenetic states of ribosomal RNA promoters during the cell cycle. Cell Cycle 7:382–390

    Article  PubMed  CAS  Google Scholar 

  7. Di Croce L, Raker VA, Corsaro M, Fazi F, Fanelli M et al (2002) Methyltransferase recruitment and DNA hypermethylation of target promoters by an oncogenic transcription factor. Science 295:1079–1082

    Article  PubMed  Google Scholar 

  8. Razin A, Riggs AD (1980) DNA methylation and gene function. Science 210:604–610

    Article  PubMed  CAS  Google Scholar 

  9. Kim G-D, Ni J, Kelesoglu N, Roberts RJ, Pradhan S (2002) Co-operation and communication between the human maintenance and de novo DNA (cytosine-5) methyltransferases. EMBO J 21:4183–4195

    Article  PubMed  CAS  Google Scholar 

  10. Szyf M, Schimmer BP, Seidman JG (1989) Nucleotide-sequence-specific de novo methylation in a somatic murine cell line. Proc Natl Acad Sci USA 86:6853–6857

    Article  PubMed  CAS  Google Scholar 

  11. Esteller M (2007) Cancer epigenomics: DNA methylomes and histone-modification maps. Nat Rev Genet 8:286–298

    Article  PubMed  CAS  Google Scholar 

  12. Pirola L, Balcerczyk A, Okabe J, El-Osta A (2010) Epigenetic phenomena linked to diabetic complications. Nat Rev Endocrinol 6(12):665–75

    Article  PubMed  CAS  Google Scholar 

  13. Ling C, Groop L (2009) Epigenetics: a molecular link between environmental factors and type 2 ­diabetes. Diabetes 58:2718–2725

    Article  PubMed  CAS  Google Scholar 

  14. Sharma P, Kumar J, Garg G, Kumar A, Patowary A et al (2008) Detection of altered global DNA methylation in coronary artery disease patients. DNA Cell Biol 27:357–365

    Article  PubMed  CAS  Google Scholar 

  15. Abel T, Zukin RS (2008) Epigenetic targets of HDAC inhibition in neurodegenerative and psychiatric disorders. Curr Opin Pharmacol 8:57–64

    Article  PubMed  CAS  Google Scholar 

  16. Feinberg AP, Vogelstein B (1983) Hypomethylation distinguishes genes of some human cancers from their normal counterparts. Nature 301:89–92

    Article  PubMed  CAS  Google Scholar 

  17. Ruo-Kai L, Han-Shui H, Jer-Wei C, Chih-Yi C, Jung-Ta C et al (2007) Alteration of DNA methyltransferases contributes to 5′CpG methylation and poor prognosis in lung cancer. Lung Cancer 55:205–213

    Article  Google Scholar 

  18. Saito Y, Kanai Y, Nakagawa T, Sakamoto M, Saito H et al (2003) Increased protein expression of DNA methyltransferase (DNMT) 1 is significantly correlated with the malignant potential and poor prognosis of human hepatocellular carcinomas. Int J Cancer 105:527–532

    Article  PubMed  CAS  Google Scholar 

  19. Girault I, Tozlu S, Lidereau R, Bièche I (2003) Expression analysis of DNA methyltransferases 1, 3A, and 3B in sporadic breast carcinomas. Clin Cancer Res 9:4415–4422

    PubMed  CAS  Google Scholar 

  20. Etoh T, Kanai Y, Ushijima S, Nakagawa T, Nakanishi Y et al (2004) Increased DNA methyltransferase 1 (DNMT1) protein expression correlates significantly with poorer tumor differentiation and frequent DNA hypermethylation of multiple CpG islands in gastric cancers. Am J Pathol 164:689–699

    Article  PubMed  CAS  Google Scholar 

  21. S-I M, Chijiwa T, Okamura T, Akashi K, Fukumaki Y et al (2001) Expression of DNA methyltransferases DNMT1, 3A, and 3B in normal hematopoiesis and in acute and chronic myelogenous leukemia. Blood 97:1172–1179

    Article  Google Scholar 

  22. Qu Y, Mu G, Wu Y, Dai X, Zhou F et al (2010) Overexpression of DNA methyltransferases 1, 3a, and 3b significantly correlates with retinoblastoma tumorigenesis. Am J Clin Pathol 134:826–834

    Article  PubMed  CAS  Google Scholar 

  23. Rhee I, Bachman KE, Park BH, Jair KW, Yen RW et al (2002) DNMT1 and DNMT3b cooperate to silence genes in human cancer cells. Nature 416:552–556

    Article  PubMed  CAS  Google Scholar 

  24. Robert MF, Morin S, Beaulieu N, Gauthier F, Chute IC et al (2003) DNMT1 is required to maintain CpG methylation and aberrant gene silencing in human cancer cells. Nat Genet 33:61–65

    Article  PubMed  CAS  Google Scholar 

  25. Sato H, Oka T, Shinnou Y, Kondo T, Washio K et al (2010) Multi-step aberrant CpG island hyper-methylation is associated with the progression of adult T-cell leukemia/lymphoma. Am J Pathol 176:402–415

    Article  PubMed  CAS  Google Scholar 

  26. Niklinska W, Naumnik W, Sulewska A, Kozłowski M, Pankiewicz W et al (2009) Prognostic significance of DAPK and RASSF1A promoter hypermethylation in non-small cell lung cancer (NSCLC). Folia Histochem Cytobiol 47:275–280

    Article  PubMed  CAS  Google Scholar 

  27. Braggio E, Maiolino A, Gouveia M, Magalhães R, Souto Filho J et al (2010) Methylation status of nine tumor suppressor genes in multiple myeloma. Int J Hematol 91:87–96

    Article  PubMed  CAS  Google Scholar 

  28. Pakneshan P, Têtu B, Rabbani SA (2004) Demethylation of urokinase promoter as a prognostic marker in patients with breast carcinoma. Clin Cancer Res 10:3035–3041

    Article  PubMed  CAS  Google Scholar 

  29. Sharma G, Mirza S, Parshad R, Srivastava A, Datta Gupta S et al (2010) CpG hypomethylation of MDR1 gene in tumor and serum of invasive ductal breast carcinoma patients. Clin Biochem 43:373–379

    Article  PubMed  CAS  Google Scholar 

  30. Muller CI, Ruter B, Koeffler HP, Lubbert M (2006) DNA hypermethylation of myeloid cells, a novel therapeutic target in MDS and AML. Curr Pharm Biotechnol 7:315–321

    Article  PubMed  Google Scholar 

  31. Kantarjian H, Issa JP, Rosenfeld CS, Bennett JM, Albitar M et al (2006) Decitabine improves patient outcomes in myelodysplastic syndromes: results of a phase III randomized study. Cancer 106:1794–1803

    Article  PubMed  CAS  Google Scholar 

  32. Anon (2003) Decitabine: 2’-deoxy-5-azacytidine, Aza dC, DAC, dezocitidine, NSC 127716. Drugs R D 4:352–358

    Google Scholar 

  33. Nowell PC (1976) The clonal evolution of tumor cell populations. Science 194:23–28

    Article  PubMed  CAS  Google Scholar 

  34. Loeb LA (1991) Mutator phenotype may be required for multistage carcinogenesis. Cancer Res 51:3075–3079

    PubMed  CAS  Google Scholar 

  35. Lengauer C, Kinzler KW, Vogelstein B (1997) DNA methylation and genetic instability in colorectal cancer cells. Proc Natl Acad Sci USA 94:2545–2550

    Article  PubMed  CAS  Google Scholar 

  36. McKenna ES, Sansam CG, Cho YJ, Greulich H, Evans JA et al (2008) Loss of the epigenetic tumor suppressor snf5 leads to cancer without genomic instability. Mol Cell Biol 28:6223–6233

    Article  PubMed  CAS  Google Scholar 

  37. Kohashi K, Oda Y, Yamamoto H, Tamiya S, Oshiro Y et al (2008) SMARCB1/INI1 protein expression in round cell soft tissue sarcomas associated with chromosomal translocations involving EWS: a special reference to SMARCB1/INI1 negative variant extraskeletal myxoid chondrosarcoma. Am J Surg Pathol 32:1168–1174

    Article  PubMed  Google Scholar 

  38. Trobaugh-Lotrario AD, Tomlinson GE, Finegold MJ, Gore L, Feusner JH (2009) Small cell undifferentiated variant of hepatoblastoma: adverse clinical and molecular features similar to rhabdoid tumors. Pediatr Blood Cancer 52:328–334

    Article  PubMed  Google Scholar 

  39. Biegel JA, Zhou JY, Rorke LB, Stenstrom C, Wainwright LM et al (1999) Germ-line and acquired mutations of INI1 in atypical teratoid and rhabdoid tumors. Cancer Res 59:74–79

    PubMed  CAS  Google Scholar 

  40. Feinberg AP, Gehrke CW, Kuo KC, Ehrlich M (1988) Reduced genomic 5-methylcytosine content in human colonic neoplasia. Cancer Res 48:1159–1161

    PubMed  CAS  Google Scholar 

  41. Finch PW, He X, Kelley MJ, Uren A, Schaudies RP et al (1997) Purification and molecular cloning of a secreted, Frizzled-related antagonist of Wnt action. Proc Natl Acad Sci USA 94:6770–6775

    Article  PubMed  CAS  Google Scholar 

  42. Suzuki H, Watkins DN, Jair KW, Schuebel KE, Markowitz SD et al (2004) Epigenetic inactivation of SFRP genes allows constitutive WNT signaling in colorectal cancer. Nat Genet 36:417–422

    Article  PubMed  CAS  Google Scholar 

  43. Zhang W, Glockner SC, Guo M, Machida EO, Wang DH et al (2008) Epigenetic inactivation of the canonical Wnt antagonist SRY-box containing gene 17 in colorectal cancer. Cancer Res 68:2764–2772

    Article  PubMed  CAS  Google Scholar 

  44. Yan PS, Venkataramu C, Ibrahim A, Liu JC, Shen RZ et al (2006) Mapping geographic zones of cancer risk with epigenetic biomarkers in normal breast tissue. Clin Cancer Res 12:6626–6636

    Article  PubMed  CAS  Google Scholar 

  45. Cheng AS, Culhane AC, Chan MW, Venkataramu CR, Ehrich M et al (2008) Epithelial progeny of estrogen-exposed breast progenitor cells display a cancer-like methylome. Cancer Res 68:1786–1796

    Article  PubMed  CAS  Google Scholar 

  46. Chen RZ, Pettersson U, Beard C, Jackson-Grusby L, Jaenisch R (1998) DNA hypomethylation leads to elevated mutation rates. Nature 395:89–93

    Article  PubMed  CAS  Google Scholar 

  47. MacLeod AR, Szyf M (1995) Expression of antisense to DNA methyltransferase mRNA induces DNA demethylation and inhibits tumorigenesis. J Biol Chem 270:8037–8043

    Article  PubMed  CAS  Google Scholar 

  48. Ramchandani S, MacLeod AR, Pinard M, von Hofe E, Szyf M (1997) Inhibition of tumorigenesis by a cytosine-DNA, methyltransferase, antisense oligodeoxynucleotide. Proc Natl Acad Sci USA 94:684–689

    Article  PubMed  CAS  Google Scholar 

  49. Mortusewicz O, Schermelleh L, Walter J, Cardoso MC, Leonhardt H (2005) Recruitment of DNA methyltransferase I to DNA repair sites. Proc Natl Acad Sci USA 102:8905–8909

    Article  PubMed  CAS  Google Scholar 

  50. Ha K, Lee GE, Palii SS, Brown KD, Takeda Y et al (2011) Rapid and transient recruitment of DNMT1 to DNA double-strand breaks is mediated by its interaction with multiple components of the DNA damage response machinery. Hum Mol Genet 20(1):126–40

    Article  PubMed  CAS  Google Scholar 

  51. Milutinovic S, Zhuang Q, Niveleau A, Szyf M (2003) Epigenomic stress response. Knockdown of DNA methyltransferase 1 triggers an intra-S-phase arrest of DNA replication and induction of stress response genes. J Biol Chem 278:14985–14995

    Article  PubMed  CAS  Google Scholar 

  52. Unterberger A, Andrews SD, Weaver IC, Szyf M (2006) DNA methyltransferase 1 knockdown activates a replication stress checkpoint. Mol Cell Biol 26:7575–7586

    Article  PubMed  CAS  Google Scholar 

  53. Chen T, Hevi S, Gay F, Tsujimoto N, He T et al (2007) Complete inactivation of DNMT1 leads to mitotic catastrophe in human cancer cells. Nat Genet 39:391–396

    Article  PubMed  CAS  Google Scholar 

  54. Palii SS, Van Emburgh BO, Sankpal UT, Brown KD, Robertson KD (2008) DNA methylation inhibitor 5-Aza-2′-deoxycytidine induces reversible genome-wide DNA damage that is distinctly influenced by DNA methyltransferases 1 and 3B. Mol Cell Biol 28:752–771

    Article  PubMed  CAS  Google Scholar 

  55. Rountree MR, Bachman KE, Baylin SB (2000) DNMT1 binds HDAC2 and a new co-repressor, DMAP1, to form a complex at replication foci. Nat Genet 25:269–277

    Article  PubMed  CAS  Google Scholar 

  56. Negishi M, Chiba T, Saraya A, Miyagi S, Iwama A (2009) Dmap1 plays an essential role in the maintenance of genome integrity through the DNA repair process. Genes Cells 14:1347–1357

    Article  PubMed  CAS  Google Scholar 

  57. Koizumi T, Negishi M, Nakamura S, Oguro H, Satoh K et al (2010) Depletion of Dnmt1-associated protein 1 triggers DNA damage and compromises the proliferative capacity of hematopoietic stem cells. Int J Hematol 91:611–619

    Article  PubMed  CAS  Google Scholar 

  58. Hochberg Z, Feil R, Constancia M, Fraga M, Junien C et al (2010) Child health, developmental plasticity, and epigenetic programming. Endocr Rev 32(2):159–224

    Article  PubMed  CAS  Google Scholar 

  59. Chiu CP, Blau HM (1984) Reprogramming cell differentiation in the absence of DNA synthesis. Cell 37:879–887

    Article  PubMed  CAS  Google Scholar 

  60. Chiu CP, Blau HM (1985) 5-Azacytidine permits gene activation in a previously noninducible cell type. Cell 40:417–424

    Article  PubMed  CAS  Google Scholar 

  61. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676

    Article  PubMed  CAS  Google Scholar 

  62. McGinnis W, Garber RL, Wirz J, Kuroiwa A, Gehring WJ (1984) A homologous protein-coding sequence in drosophila homeotic genes and its conservation in other metazoans. Cell 37:403–408

    Article  PubMed  CAS  Google Scholar 

  63. Bracken AP, Dietrich N, Pasini D, Hansen KH, Helin K (2006) Genome-wide mapping of Polycomb target genes unravels their roles in cell fate transitions. Genes Dev 20:1123–1136

    Article  PubMed  CAS  Google Scholar 

  64. Bernstein BE, Mikkelsen TS, Xie X, Kamal M, Huebert DJ et al (2006) A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell 125:315–326

    Article  PubMed  CAS  Google Scholar 

  65. Ohm JE, McGarvey KM, Yu X, Cheng L, Schuebel KE et al (2007) A stem cell-like chromatin pattern may predispose tumor suppressor genes to DNA hypermethylation and heritable silencing. Nat Genet 39:237–242

    Article  PubMed  CAS  Google Scholar 

  66. Vire E, Brenner C, Deplus R, Blanchon L, Fraga M et al (2006) The polycomb group protein EZH2 directly controls DNA methylation. Nature 439:871–874

    Article  PubMed  CAS  Google Scholar 

  67. Jordan CT (2009) Cancer stem cells: controversial or just misunderstood? Cell Stem Cell 4:203–205

    Article  PubMed  CAS  Google Scholar 

  68. Hong D, Gupta R, Ancliff P, Atzberger A, Brown J et al (2008) Initiating and cancer-propagating cells in TEL-AML1-associated childhood leukemia. Science 319:336–339

    Article  PubMed  CAS  Google Scholar 

  69. Mullighan CG, Phillips LA, Su X, Ma J, Miller CB et al (2008) Genomic analysis of the clonal origins of relapsed acute lymphoblastic leukemia. Science 322:1377–1380

    Article  PubMed  CAS  Google Scholar 

  70. Widschwendter M, Fiegl H, Egle D, Mueller-Holzner E, Spizzo G et al (2007) Epigenetic stem cell signature in cancer. Nat Genet 39:157–158

    Article  PubMed  CAS  Google Scholar 

  71. Passegue E, Jamieson CH, Ailles LE, Weissman IL (2003) Normal and leukemic hematopoiesis: are leukemias a stem cell disorder or a reacquisition of stem cell characteristics? Proc Natl Acad Sci USA 100(Suppl 1):11842–11849

    Article  PubMed  CAS  Google Scholar 

  72. Pardal R, Clarke MF, Morrison SJ (2003) Applying the principles of stem-cell biology to cancer. Nat Rev Cancer 3:895–902

    Article  PubMed  CAS  Google Scholar 

  73. Jordan CT, Guzman ML, Noble M (2006) Cancer stem cells. N Engl J Med 355:1253–1261

    Article  PubMed  CAS  Google Scholar 

  74. Krivtsov AV, Twomey D, Feng Z, Stubbs MC, Wang Y et al (2006) Transformation from committed progenitor to leukaemia stem cell initiated by MLL–AF9. Nature 442:818–822

    Article  PubMed  CAS  Google Scholar 

  75. Pulukuri SMK, Gorantla B, Dasari VR, Gondi CS, Rao JS (2010) Epigenetic upregulation of urokinase plasminogen activator promotes the tropism of mesenchymal stem cells for tumor cells. Mol Cancer Res 8:1074–1083

    Article  PubMed  CAS  Google Scholar 

  76. Zhao D, Najbauer J, Garcia E, Metz MZ, Gutova M et al (2008) Neural stem cell tropism to glioma: critical role of tumor hypoxia. Mol Cancer Res 6:1819–1829

    Article  PubMed  CAS  Google Scholar 

  77. Thompson EW, Newgreen DF, Tarin D (2005) Carcinoma invasion and metastasis: a role for ­epithelial-mesenchymal transition? Cancer Res 65:5991–5995, discussion 5995

    Article  PubMed  CAS  Google Scholar 

  78. Risbridger GP, Davis ID, Birrell SN, Tilley WD (2010) Breast and prostate cancer: more similar than different. Nat Rev Cancer 10:205–212

    Article  PubMed  CAS  Google Scholar 

  79. Gupta GP, Massague J (2006) Cancer metastasis: building a framework. Cell 127:679–695

    Article  PubMed  CAS  Google Scholar 

  80. Thiery JP (2002) Epithelial-mesenchymal transitions in tumour progression. Nat Rev Cancer 2:442–454

    Article  PubMed  CAS  Google Scholar 

  81. Sarrio D, Rodriguez-Pinilla SM, Hardisson D, Cano A, Moreno-Bueno G et al (2008) Epithelial-mesenchymal transition in breast cancer relates to the basal-like phenotype. Cancer Res 68:989–997

    Article  PubMed  CAS  Google Scholar 

  82. Graff JR, Herman JG, Lapidus RG, Chopra H, Xu R et al (1995) E-cadherin expression is silenced by dna hypermethylation in human breast and prostate carcinomas. Cancer Res 55:5195–5199

    PubMed  CAS  Google Scholar 

  83. von Burstin J, Eser S, Paul MC, Seidler B, Brandl M et al (2009) E-cadherin regulates metastasis of pancreatic cancer in vivo and is suppressed by a SNAIL/HDAC1/HDAC2 repressor complex. Gastroenterology 137:361–371

    Article  CAS  Google Scholar 

  84. Lei W, Zhang K, Pan X, Hu Y, Wang D et al (2010) Histone deacetylase 1 is required for transforming growth factor-[beta]1-induced epithelial-mesenchymal transition. Int J Biochem Cell Biol 42:1489–1497

    Article  PubMed  CAS  Google Scholar 

  85. Su H-Y, Lai H-C, Lin Y-W, Liu C-Y, Chen C-K et al (2010) Epigenetic silencing of SFRP5 is related to malignant phenotype and chemoresistance of ovarian cancer through Wnt signaling pathway. Int J Cancer 127:555–567

    Article  PubMed  CAS  Google Scholar 

  86. Kawakami K, Yamamura S, Hirata H, Ueno K, Saini S et al (2010) Secreted frizzled-related protein-5 (sFRP-5) is epigenetically downregulated and functions as a tumor suppressor in kidney cancer. Int J Cancer 128(3):541–50

    Article  CAS  Google Scholar 

  87. Xue C, Plieth D, Venkov C, Xu C, Neilson EG (2003) The gatekeeper effect of epithelial-mesenchymal transition regulates the frequency of breast cancer metastasis. Cancer Res 63:3386–3394

    PubMed  CAS  Google Scholar 

  88. Nagaraja GM, Othman M, Fox BP, Alsaber R, Pellegrino CM et al (2006) Gene expression signatures and biomarkers of noninvasive and invasive breast cancer cells: comprehensive profiles by representational difference analysis, microarrays and proteomics. Oncogene 25:2328–2338

    Article  PubMed  CAS  Google Scholar 

  89. Ma X, Yang Y, Wang Y, An G, Lv G (2010) Small interfering RNA-directed knockdown of S100A4 decreases proliferation and invasiveness of osteosarcoma cells. Cancer Lett 299:171–181

    Article  PubMed  CAS  Google Scholar 

  90. Parfyonova YV, Plekhanova OS, Tkachuk VA (2002) Plasminogen activators in vascular remodeling and angiogenesis. Biochemistry (Mosc) 67:119–134

    Article  CAS  Google Scholar 

  91. Liotta LA, Tryggvason K, Garbisa S, Hart I, Foltz CM et al (1980) Metastatic potential correlates with enzymatic degradation of basement membrane collagen. Nature 284:67–68

    Article  PubMed  CAS  Google Scholar 

  92. Mazar A, Henkin J, Goldfarb R (1999) The urokinase plasminogen activator system in cancer: implications for tumor angiogenesis and metastasis. Angiogenesis 3:15–32

    Article  PubMed  CAS  Google Scholar 

  93. Møller LB, Pöllänen J, Rønne E, Pedersen N, Blasi F (1993) N-linked glycosylation of the ligand-binding domain of the human urokinase receptor contributes to the affinity for its ligand. J Biol Chem 268:11152–11159

    PubMed  Google Scholar 

  94. Estreicher A, Muhlhauser J, Carpentier JL, Orci L, Vassalli JD (1990) The receptor for urokinase type plasminogen activator polarizes expression of the protease to the leading edge of migrating monocytes and promotes degradation of enzyme inhibitor complexes. J Cell Biol 111:783–792

    Article  PubMed  CAS  Google Scholar 

  95. Limongi P, Resnati M, Hernandez-Marrero L, Cremona O, Blasi F et al (1995) Biosynthesis and apical localization of the urokinase receptor in polarized MDCK epithelial cells. FEBS Lett 369:207–211

    Article  PubMed  CAS  Google Scholar 

  96. Quax PH, van Leeuwen RT, Verspaget HW, Verheijen JH (1990) Protein and messenger RNA levels of plasminogen activators and inhibitors analyzed in 22 human tumor cell lines. Cancer Res 50:1488–1494

    PubMed  CAS  Google Scholar 

  97. Rabbani SA, Mazar AP (2001) The role of the plasminogen activation system in angiogenesis and metastasis. Surg Oncol Clin N Am 10:393–415, x

    Google Scholar 

  98. Rabbani SA, Xing RH (1998) Role of urokinase (uPA) and its receptor (uPAR) in invasion and metastasis of hormone-dependent malignancies. Int J Oncol 12:911–920

    PubMed  CAS  Google Scholar 

  99. Guo Y, Pakneshan P, Gladu J, Slack A, Szyf M et al (2002) Regulation of DNA methylation in human breast cancer. Effect on the urokinase-type plasminogen activator gene production and tumor invasion. J Biol Chem 277:41571–41579

    Article  PubMed  CAS  Google Scholar 

  100. Pakneshan P, Szyf M, Farias-Eisner R, Rabbani SA (2004) Reversal of the hypomethylation status of urokinase (uPA) promoter blocks breast cancer growth and metastasis. J Biol Chem 279:31735–31744

    Article  PubMed  CAS  Google Scholar 

  101. Shukeir N, Pakneshan P, Chen G, Szyf M, Rabbani SA (2006) Alteration of the methylation status of tumor-promoting genes decreases prostate cancer cell invasiveness and tumorigenesis in vitro and in vivo. Cancer Res 66:9202–9210

    Article  PubMed  CAS  Google Scholar 

  102. Zhao Y, Li JS, Guo MZ, Feng BS, Zhang JP (2010) Inhibitory effect of S-adenosylmethionine on the growth of human gastric cancer cells in vivo and in vitro. Chin J Cancer 29:752–760

    Article  PubMed  CAS  Google Scholar 

  103. Detich N, Hamm S, Just G, Knox JD, Szyf M (2003) The methyl donor s-adenosylmethionine inhibits active demethylation of dna: a candidate novel mechanism for the pharmacological effects of S-adenosylmethionine. J Biol Chem 278:20812–20820

    Article  PubMed  CAS  Google Scholar 

  104. Xing J, Stewart DJ, Gu J, Lu C, Spitz MR et al (2008) Expression of methylation-related genes is associated with overall survival in patients with non-small cell lung cancer. Br J Cancer 98:1716–1722

    Article  PubMed  CAS  Google Scholar 

  105. Campbell PM, Bovenzi V, Szyf M (2004) Methylated DNA-binding protein 2 antisense inhibitors suppress tumourigenesis of human cancer cell lines in vitro and in vivo. Carcinogenesis 25:499–507

    Article  PubMed  CAS  Google Scholar 

  106. Ivanov MA, Lamrihi B, Szyf M, Scherman D, Bigey P (2003) Enhanced antitumor activity of a combination of MBD2-antisense electrotransfer gene therapy and bleomycin electrochemotherapy. J Gene Med 5:893–899

    Article  PubMed  CAS  Google Scholar 

  107. Champion C, Guianvarc’h D, Senamaud-Beaufort C, Jurkowska RZ, Jeltsch A et al (2010) Mechanistic insights on the inhibition of c5 DNA methyltransferases by zebularine. PLoS One 5:e12388

    Article  PubMed  CAS  Google Scholar 

  108. Ateeq B, Unterberger A, Szyf M, Rabbani SA (2008) Pharmacological inhibition of DNA methylation induces proinvasive and prometastatic genes in vitro and in vivo. Neoplasia 10:266–278

    PubMed  CAS  Google Scholar 

  109. Chik F, Szyf M (2010) Effects of specific DNMT-gene depletion on cancer cell transformation and breast cancer cell invasion; towards selective DNMT inhibitors. Carcinogenesis 32(2):224–32

    Article  PubMed  CAS  Google Scholar 

  110. Frost P, Kerbel RS, Hunt B, Man S, Pathak S (1987) Selection of metastatic variants with identifiable karyotypic changes from a nonmetastatic murine tumor after treatment with 2′-deoxy-5-azacytidine or hydroxyurea: implications for the mechanisms of tumor progression. Cancer Res 47:2690–2695

    PubMed  CAS  Google Scholar 

  111. Yu Y, Zeng P, Xiong J, Liu Z, Berger SL et al (2010) Epigenetic drugs can stimulate metastasis through enhanced expression of the pro-metastatic ezrin gene. PLoS One 5:e12710

    Article  PubMed  CAS  Google Scholar 

  112. Jung Y, Park J, Kim TY, Park JH, Jong HS et al (2007) Potential advantages of DNA methyltransferase 1 (DNMT1)-targeted inhibition for cancer therapy. J Mol Med 85:1137–1148

    Article  PubMed  CAS  Google Scholar 

  113. Szyf M, Pakneshan P, Rabbani SA (2004) DNA demethylation and cancer: therapeutic implications. Cancer Lett 211:133–143

    Article  PubMed  CAS  Google Scholar 

  114. Szyf M, Pakneshan P, Rabbani SA (2004) DNA methylation and breast cancer. Biochem Pharmacol 68:1187–1197

    Article  PubMed  CAS  Google Scholar 

  115. Szyf M (2009) Epigenetics, DNA methylation, and chromatin modifying drugs. Annu Rev Pharmacol Toxicol 49:243–263

    Article  PubMed  CAS  Google Scholar 

  116. Szyf M (2005) DNA methylation and demethylation as targets for anticancer therapy. Biochemistry (Mosc) 70:533–549

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Flora Chik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Chik, F., Szyf, M., Rabbani, S.A. (2011). Role of Epigenetics in Cancer Initiation and Progression. In: Rhim, J., Kremer, R. (eds) Human Cell Transformation. Advances in Experimental Medicine and Biology, vol 720. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-0254-1_8

Download citation

Publish with us

Policies and ethics