Skip to main content

The Role of the Basal Stem Cell of the Human Breast in Normal Development and Cancer

  • Chapter
  • First Online:
Human Cell Transformation

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 720))

Abstract

MCF-10F, an ERα negative human breast epithelial cell line derived from normal breast tissue, is able to form ductal structures in a tridimensional collagen matrix system. MCF-10F cells that are estrogen transformed (trMCF cells) progressively express phenotypes of in vitro cell transformation, including colony formation in agar methocel and loss of the ductulogenic capacity. Selection of these trMCF cells for invasiveness identified cells (bcMCF) that formed tumors in severe combined immunodeficient mice. The cell lines derived from those tumors (caMCF) were poorly differentiated ER, PR, and ERBB2 negative adenocarcinomas. These characteristics are similar to the human basal cell-like carcinomas. This in vitro–in vivo model demonstrates the importance of the basal cell type as a stem cell that reconstitutes the branching pattern of the breast and that is also target of a carcinogenic insult leading to transformation and cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bouchardy C, Fioretta G, Verkooijen HM, Vlastos G, Schaefer P, Delaloye J-F, Neyroud-Caspar I, Balmer Majno S, Wespi Y, Forni M, Chappuis P, Sappino A-P, Rapiti E (2007) Recent increase of breast cancer incidence among women under the age of forty. Br J Cancer 96:1743–1746

    Article  PubMed  CAS  Google Scholar 

  2. Turner NC, Reis-Filho JS (2006) Basal-like breast cancer and the BRCA1 phenotype. Oncogene 25:5846–5853

    Article  PubMed  CAS  Google Scholar 

  3. Tawfik O, Kimler BF, Davis M, Stasik C, Lai SM, Mayo MS, Fan F, Donahue JK, Damjanov I, Thomas P, Connor C, Jewell WR, Smith H, Fabian CJ (2007) Grading invasive ductal carcinoma of the breast: advantages of using automated proliferation index instead of mitotic count. Virchows Arch 450(6):627–636

    Article  PubMed  Google Scholar 

  4. Perou CM, Sørlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA, Pollack JR, Ross DT, Johnsen H, Akslen LA, Fluge O, PergamenschikovA WC, Zhu SX, Lønning PE, Børresen-Dale AL, Brown PO, Botstein D (2000) Molecular portraits of human breast tumours. Nature 406:747–752

    Article  PubMed  CAS  Google Scholar 

  5. Sorlie T, Perou CM, Tibshirani R et al (2001) Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci U S A 98:10869–10874

    Article  PubMed  CAS  Google Scholar 

  6. Sorlie T, Tibshirani R, Parker J et al (2003) Repeated observation of breast tumor subtypes in independent gene expression data sets. Proc Natl Acad Sci U S A 100:8418–8423

    Article  PubMed  CAS  Google Scholar 

  7. van de Rijn M, Perou CM, Tibshirani R et al (2002) Expression of cytokeratins 17 and 5 identifies a group of breast carcinomas with poor clinical outcome. Am J Pathol 161:1991–1996

    Article  PubMed  Google Scholar 

  8. Rakha EA, El-Sayed ME, Green AR, Lee AH, Robertson JF, Ellis IO (2007) Prognostic markers in triple-negative breast cancer. Cancer 109:25–32

    Article  PubMed  CAS  Google Scholar 

  9. Chlebowski RT, Chen Z, Anderson GL, Rohan T, Aragaki A, Lane D, Dolan NC, Paskett ED, McTiernan A, Hubbell FA, Adams-Campbell LL, Prentice R (2005) Ethnicity and breast cancer: factors influencing differences in incidence and outcome. J Natl Cancer Inst 97:439–448

    Article  PubMed  Google Scholar 

  10. Newman LA, Mason J, Cote D, Vin Y, Carolin K, Bouwman D, Colditz GA (2002) African-American ethnicity, socioeconomic status, and breast cancer survival: a meta-analysis of 14 studies involving over 10,000 African-American and 40,000 White American patients with carcinoma of the breast. Cancer 94:2844–2854

    Article  PubMed  Google Scholar 

  11. Li CI, Malone KE, Daling JR (2002) Differences in breast cancer hormone receptor status and histology by race and ethnicity among women 50 years of age and older. Cancer Epidemiol Biomarkers Prev 11:601–607

    PubMed  Google Scholar 

  12. Joslyn SA (2002) Hormone receptors in breast cancer: racial differences in distribution and survival. Breast Cancer Res Treat 73:45–59

    Article  PubMed  CAS  Google Scholar 

  13. Lippman ME (1993) The development of biological therapies for breast cancer. Science 259:631–632

    Article  PubMed  CAS  Google Scholar 

  14. Cunningham JE, Butler WM (2004) Racial disparities in female breast cancer in South Carolina: clinical evidence for a biological basis. Breast Cancer Res Treat 88:161–176

    Article  PubMed  Google Scholar 

  15. Millikan RC, Newman B, Tse CK, Moorman PG, Conway K, Dressler LG, Smith LV, Labbok MH, Geradts J, Bensen JT, Jackson S, Nyante S, Livasy C, Carey L, Earp HS, Perou CM (2008) Epidemiology of basal-like breast cancer. Breast Cancer Res Treat 109:123–139

    Article  PubMed  Google Scholar 

  16. Vona-Davis L, Rose DP (2009) The influence of socioeconomic disparities on breast cancer tumor biology and prognosis: a review. J Womens Health (Larchmt) 18(6):883–893

    Article  Google Scholar 

  17. Troester MA, Swift-Scanlan T (2009) Challenges in studying the etiology of breast cancer subtypes. Breast Cancer Res 11(3):104

    Article  PubMed  Google Scholar 

  18. Lin NU, Claus E, Sohl J, Razzak AR, Arnaout A, Winer EP (2008) Sites of distant recurrence and clinical outcomes in patients with metastatic triple-negative breast cancer: high incidence of central nervous system metastases. Cancer 113(10):2638–2645

    Article  PubMed  Google Scholar 

  19. Anderson WF, Jatoi I, Devesa SS (2005) Distinct breast cancer incidence and prognostic patterns in the NCI’s SEER program: suggesting a possible link between etiology and outcome. Breast Cancer Res Treat 90:127–137

    Article  PubMed  Google Scholar 

  20. Wang X, Chao L, Li X, Ma G, Chen L, Zang Y, Zhou G (2010) Elevated expression of phosphorylated c-Jun NH2-terminal kinase in basal-like and “triple-negative” breast cancers. Hum Pathol 41:401–403

    Article  PubMed  CAS  Google Scholar 

  21. Bauer KR, Brown M, Cress RD, Parise CA, Caggiano V (2007) Descriptive analysis of estrogen receptor (ER)-negative, progesterone receptor (PR)- negative, and HER2-negative invasive breast cancer, the so-called triple-negative phenotype: a population-based study from the California cancer Registry. Cancer 109:1721–1728

    Article  PubMed  Google Scholar 

  22. Cheang MC, Voduc D, Bajdik C, Leung S, McKinney S, Chia SK, Perou CM, Nielsen TO (2008) Basal-like breast cancer defined by five biomarkers has superior prognostic value than triple-negative phenotype. Clin Cancer Res 14:1368–1376

    Article  PubMed  CAS  Google Scholar 

  23. Phipps AI, Malone KE, Porter PL, Daling JR, Li CI (2008) Body size and risk of luminal, HER2-overexpressing, and triple-negative breast cancer in postmenopausal women. Cancer Epidemiol Biomarkers Prev 17:2078–2086

    Article  PubMed  CAS  Google Scholar 

  24. Russo IH, Russo J (2004) In vitro models for human breast cancer. In: Molecular basis of breast cancer prevention and treatment. Springer, Heidelberg, pp 227–80

    Chapter  Google Scholar 

  25. Russo J, Hasan Lareef M, Balogh G, Guo S, Russo IH (2003) Estrogen and its metabolites are carcinogenic agents in human breast epithelial cells. J Steroid Biochem Mol Biol 87:1–25

    Article  PubMed  CAS  Google Scholar 

  26. Lareef MH, Garber J, Russo PA et al (2005) The estrogen antagonist ICI-182-780 does not inhibit the transformation phenotypes induced by 17-beta-estradiol and 4-OH estradiol in human breast epithelial cells. Int J Oncol 26:423–429

    PubMed  CAS  Google Scholar 

  27. Fernandez SV, Russo IH, Russo J (2006) Estradiol and its metabolites 4-hydroxyestradiol and 2-hydroxyestradiol induce mutations in human breast ­epithelial cells. Int J Cancer 118:1862–1868

    Article  PubMed  CAS  Google Scholar 

  28. Russo J, Lareef MH, Tahin Q et al (2002) 17 Beta-estradiol is carcinogenic in human breast epithelial cells. J Steroid Biochem Mol Biol 80:149–162

    Article  PubMed  CAS  Google Scholar 

  29. Russo J, Fernandez SV, Russo PA et al (2006) 17-­Beta-estradiol induces transformation and tumorigenesis in human breast epithelial cells. FASEB J 20:1622–1634

    Article  PubMed  CAS  Google Scholar 

  30. Huang Y, Fernandez SV, Goodwin S, Russo PA, Russo IH, Sutter TR, Russo J (2007) Epithelial to mesenchymal transition in human breast epithelial cells transformed by 17β-estradiol. Cancer Res 67:11147–11157

    Article  PubMed  CAS  Google Scholar 

  31. Russo J, Gusterson BA, Rogers AE et al (1990) Comparative study of human and rat mammary tumorigenesis. Lab Invest 62:244–278

    PubMed  CAS  Google Scholar 

  32. Calaf G, Zhang PL, Alvarado MV, Estrada S, Russo J (1995) C-Ha-ras enhances the neoplastic transformation of human breast epithelial cells treated with chemical carcinogens. Int J Oncol 6:5–11

    PubMed  CAS  Google Scholar 

  33. Charafe-Jauffret E, Ginestier C, Monville F, Finetti P, Adelaide J, Cervera N, Fekairi S, Xerri L, Jacquemier J, Brinbaum D, Bertucci F (2006) Gene expression profiling of breast cell lines identifies potential new basal markers. Oncogene 25:2273–2284

    Article  PubMed  CAS  Google Scholar 

  34. Neve RM, Chin K, Fridlyand J, Yeh J, Baehner FL, Fevr T, Clark L et al (2006) A collection of breast cancer cell lines for the study of funtionally distinct cancer subtypes. Cancer Cell 10:515–527

    Article  PubMed  CAS  Google Scholar 

  35. Sarrio D, Rodriguez-Pinilla SM, Hardisson D, Cano A, Moreno-Bueno G, Palacios J (2008) Epithelial-mesenchymal transition in breast cancer relates to the basal-like phenotype. Cancer Res 68:989–997

    Article  PubMed  CAS  Google Scholar 

  36. Moustakas A, Heldin C-H (2007) Signaling networks guiding epithelial-mesenchymal transitions during embryogenesis and cancer progression. Cancer Sci 98:1512–1520

    Article  PubMed  CAS  Google Scholar 

  37. Peinado H, Olmeda D, Cano A (2007) Snail, ZEB and bHLH factors in tumor progression: an alliance against the epithelial phenotype? Nature Rev 7:415–428

    CAS  Google Scholar 

  38. Han H-J, Russo J, Kohwi Y, Kohwi-Shigematsu T (2008) SATB1 reprogrammes gene expression to promote breast tumour growth and metastasis. Nature 452:187–195

    Article  PubMed  CAS  Google Scholar 

  39. Klopocki E, Kristiansen G, Wild PJ, Klaman I, Castanos-Velez E, Singer G, Stohr R, Sauter G, Leibiger H, Essers L, Weber B, Hermann K, Rosenthal A, Hartmann A, Dahl E (2004) Loss of SFRP1 is associated with breast cancer progression and poor prognosis in early stage tumors. Int J Oncol 25:641–649

    PubMed  CAS  Google Scholar 

  40. Henshall SM, Horvath LG, Quinn DI, Eggleton SA, Grygiel JJ, Stricker PD, Biankin AV, Kench JG, Sutherland RL (2006) Zinc-alpha2-glycoprotein expression as a predictor of metastatic prostate cancer following radical prostatectomy. J Natl Cancer Inst 98(19):1420–1424

    Article  PubMed  CAS  Google Scholar 

  41. Lapointe J, Li C, Higgins JP, van de Rijn M, Bair E, Montgomery K, Ferrari M, Egevad L, Rayford W, Bergerheim U, Ekman P, DeMarzo AM, Tibshirani R, Botstein D, Brown PO, Brooks JD, Pollack JR (2004) Gene expression profiling identifies clinically relevant subtypes of prostate cancer. Proc Natl Acad Sci U S A 101:811–816

    Article  PubMed  CAS  Google Scholar 

  42. Park D, Kåresen R, Axcrona U, Noren T, Sauer T (2007) Expression pattern of adhesion molecules (E-cadherin, alpha-, beta-, gamma-catenin and claudin-7), their influence on survival in primary breast carcinoma, and their corresponding axillary lymph node metastasis. APMIS 115:52–65

    Article  PubMed  CAS  Google Scholar 

  43. Sauer T, Pedersen MK, Ebeltoft K, Naess O (2005) Reduced expression of Claudin-7 in fine needle aspirates from breast carcinomas correlate with grading and metastatic disease. Cytopathology 16:193–198

    Article  PubMed  CAS  Google Scholar 

  44. Usami Y, Chiba H, Nakayama F, Ueda J, Matsuda Y, Sawada N, Komori T, Ito A, Yokozaki H (2006) Reduced expression of claudin-7 correlates with invasion and metastasis in squamous cell carcinoma of the esophagus. Hum Pathol 37:569–577

    Article  PubMed  CAS  Google Scholar 

  45. Usami Y, Satake S, Nakayama F, Matsumoto M, Ohnuma K, Komori T, Semba S, Ito A, Yokozaki H (2008) Snail-associated epithelial-mesenchymal transition promotes oesophageal squamous cell carcinoma motility and progression. J Pathol 215:330–339

    Article  PubMed  CAS  Google Scholar 

  46. Gosens I, Sessa A, den Hollander AI, Letteboer SJ, Belloni V, Arends ML, Le Bivic A, Cremers FP, Broccoli V, Roepman R (2007) FERM protein EPB4iL5 is a novel member of the mammalian CRB-MPP5 polarity complex. Exp Cell Res 313:3959–3970

    Article  PubMed  CAS  Google Scholar 

  47. Xu L, Begum S, Hearn JD, Hynes RO (2006) GPR56, an atypical G protein-coupled receptor, binds tissue transglutaminase, TG2, and inhibits melanoma tumor growth and metastasis. Proc Natl Acad Sci U S A 103:9023–9028

    Article  PubMed  CAS  Google Scholar 

  48. Xu L, Hynes RO (2007) GRP56 and TG2: possible roles in suppression of tumor growth by the microenvironment. Cell Cycle 6:160–165

    Article  PubMed  CAS  Google Scholar 

  49. Kwak MK, Lee HJ, Hur K, Parkdo J, Lee HS, Kim WH, Lee KU, Choe KJ, Guilford P, Yang HK (2008) Expression of Krüppel-like factor 5 in human gastric carcinomas. J Cancer Res Clin Oncol 134:163–167

    Article  PubMed  CAS  Google Scholar 

  50. Haase D, Meister M, Muley T, Hess J, Teurich S, Schnabel P, Hartenstein B, Angel P (2007) FMRD3, a novel putative tumour suppressor in NSCLC. Oncogene 26:4464–4468

    Article  PubMed  CAS  Google Scholar 

  51. Kairouz R, Parmar J, Lyons RJ, Swarbrick A, Musgrove EA, Daly RJ (2005) Hormonal regulation of the Grb14 signal modulator and its role in cell cycle progression of MCF-7 human breast cancer cells. J Cell Physiol 203:85–93

    Article  PubMed  CAS  Google Scholar 

  52. Lyons RJ, Deane R, Lynch DK, Ye ZS, Sanderson GM, Eyre HJ, Sutherland GR, Daly RJ (2001) Identification of a novel human tankyrase through its interaction with the adaptor protein Grb14. J Biol Chem 276:17172–17180

    Article  PubMed  CAS  Google Scholar 

  53. Rodrigues-Ferreira S, Di Tommaso A, Dimitrov A, Cazaubon S, Gruel N, Colasson H, Nicolas A, Chaverot N, Molinié V, Reyal F, Sigal-Zafrani B, Terris B, Delattre O, Radvanyi F, Perez F, Vincent-Salomon A, Nahmias C (2009) 8p22 MTUS1 gene product ATIP3 is a novel anti-mitotic protein underexpressed in invasive breast carcinoma of poor prognosis. PLoS One 4:e7239

    Article  PubMed  Google Scholar 

  54. Frank B, Bermejo JL, Hemminki K, Sutter C, Wappenschmidt B, Meindl A, Kiechle-Bahat M, Bugert P, Schmutzler RK, Bartram CR, Burwinkel B (2007) Copy number variant in the candidate tumor suppressor gene MTUS1 and familial breast cancer risk. Carcinogenesis 28:1442–1445

    Article  PubMed  CAS  Google Scholar 

  55. Di Benedetto M, Bièche I, Deshayes F, Vacher S, Nouet S, Collura V, Seitz I, Louis S, Pineau P, Amsellem-Ouazana D, Couraud PO, Strosberg AD, Stoppa-Lyonnet D, Lidereau R, Nahmias C (2006) Structural organization and expression of human MTUS1, a candidate 8p22 tumor suppressor gene encoding a family of angiotensin II AT2 receptor-­interacting proteins, ATIP. Gene 380:127–136

    Article  PubMed  Google Scholar 

  56. Zuern C, Heimrich J, Kaufmann R, Richter KK, Settmacher U, Wanner C, Galle J, Seibold S (2010) Down-regulation of MTUS1 in human colon tumors. Oncol Rep 23:183–189

    PubMed  CAS  Google Scholar 

  57. Huang D, Yu B, Deng Y, Sheng W, Peng Z, Qin W, Du X (2010) SFRP4 was overexpressed in colorectal carcinoma. J Cancer Res Clin Oncol 136:395–401

    Article  PubMed  CAS  Google Scholar 

  58. Saini S, Liu J, Yamamura S, Majid S, Kawakami K, Hirata H, Dahiya R (2009) Functional significance of secreted Frizzled-related protein 1 in metastatic renal cell carcinomas. Cancer Res 69:6815–6822

    Article  PubMed  CAS  Google Scholar 

  59. Hu J, Dong A, Fernandez-Ruiz V, Shan J, Kawa M, Martínez-Ansó E, Prieto J, Qian C (2009) Blockade of Wnt signaling inhibits angiogenesis and tumor growth in hepatocellular carcinoma. Cancer Res 69:6951–6959

    Article  PubMed  CAS  Google Scholar 

  60. Lin YW, Chung MT, Lai HC, De Yan M, Shih YL, Chang CC, Yu MH (2009) Methylation analysis of SFRP genes family in cervical adenocarcinoma. J Cancer Res Clin Oncol 135:1665–1674

    Article  PubMed  CAS  Google Scholar 

  61. Gauger KJ, Hugh JM, Troester MA, Schneider SS (2009) Down-regulation of sfrp1 in a mammary epithelial cell line promotes the development of a cd44high/cd24low population which is invasive and resistant to anoikis. Cancer Cell Int 9:11

    Article  PubMed  Google Scholar 

  62. Cheng H, Liu P, Wang ZC, Zou L, Santiago S, Garbitt V, Gjoerup OV, Iglehart JD, Miron A, Richardson AL, Hahn WC, Zhao JJ (2009) SIK1 couples LKB1 to p53-dependent anoikis and suppresses metastasis. Sci Signal 2:ra35

    Article  PubMed  Google Scholar 

  63. Takemori H, Katoh Hashimoto Y, Nakae J, Olson EN, Okamoto M (2009) Inactivation of HDAC5 by SIK1 in AICAR-treated C2C12 myoblasts. Endocr J 56:121–130

    Article  PubMed  CAS  Google Scholar 

  64. Kowanetz M, Lönn P, Vanlandewijck M, Kowanetz K, Heldin CH, Moustakas A (2008) TGFbeta induces SIK to negatively regulate type I receptor kinase ­signaling. J Cell Biol 182:655–662

    Article  PubMed  CAS  Google Scholar 

  65. Ding L, Niu C, Zheng Y, Xiong Z, Liu Y, Lin J, Sun H, Huang K, Yang W, Li X, Ye Q (2011) FHL1 interacts with estrogen receptors and regulates breast ­cancer cell growth. J Cell Mol Med 15:72–85

    Article  PubMed  CAS  Google Scholar 

  66. Lin J, Ding L, Jin R, Zhang H, Cheng L, Qin X, Chai J, Ye Q (2009) Four and a half LIM domains 1 and receptor interacting protein of 140kDa (RIP140) interact and cooperate in estrogen signaling. Int J Biochem Cell Biol 41:1613–1618

    Article  PubMed  CAS  Google Scholar 

  67. Engin F, Bertin T, Ma O, Jiang MM, Wang L, Sutton RE, Donehower LA, Lee B (2009) Notch signaling contributes to the pathogenesis of human osteosarcomas. Hum Mol Genet 18:1464–1470

    Article  PubMed  CAS  Google Scholar 

  68. Miyazono K (2009) Transforming growth factor-beta signaling in epithelial-mesenchymal transition and progression of cancer. Proc Jpn Acad Ser B Phys Biol Sci 85:314–323

    Article  PubMed  CAS  Google Scholar 

  69. Pennanen PT, Sarvilinna NS, Ylikomi TJ (2009) Gene expression changes during the development of estrogen-independent and antiestrogen-resistant growth in breast cancer cell culture models. Anticancer Drugs 20:51–58

    Article  PubMed  CAS  Google Scholar 

  70. Matsuo K, Owens JM, Tonko M, Elliott C, Chambers TJ, Wagner EF (2000) Fosl1 is a transcriptional target of c-Fos during osteoclast differentiation. Nat Genet 24:184–187

    Article  PubMed  CAS  Google Scholar 

  71. Young MR, Colburn NH (2006) Fra-1 a target for cancer prevention or intervention. Gene 379:1–11

    Article  PubMed  CAS  Google Scholar 

  72. Wang HY, Zhang JY, Cui JT, Tan XH, Li WM, Gu J, Lu YY (2010) Expression status of S100A14 and S100A4 correlates with metastatic potential and clinical outcome in colorectal cancer after surgery. Oncol Rep 23:45–52

    PubMed  CAS  Google Scholar 

  73. Hua J, Chen D, Fu H, Zhang R, Shen W, Liu S, Sun K, Sun X (2010) Short hairpin RNA-mediated inhibition of S100A4 promotes apoptosis and suppresses proliferation of BGC823 gastric cancer cells in vitro and in vivo. Cancer Lett 292:41–47

    Article  PubMed  CAS  Google Scholar 

  74. Boye K, Mælandsmo GM (2010) S100A4 and metastasis: a small actor playing many roles. Am J Pathol 176:528–535

    Article  PubMed  CAS  Google Scholar 

  75. Ismail TM, Zhang S, Fernig DG, Gross S, Martin-Fernandez ML, See V, Tozawa K, Tynan CJ, Wang G, Wilkinson MC, Rudland PS, Barraclough R (2010) Self-association of calcium-binding protein S100A4 and metastasis. J Biol Chem 285:914–922

    Article  PubMed  CAS  Google Scholar 

  76. Russo J, Hu YF, Yang X, Russo IH (2000) Developmental, cellular and molecular basis of human breast cancer. J Natl Cancer Inst Monogr 27:17–38

    Article  PubMed  CAS  Google Scholar 

  77. Tiezzi DG, Fernandez SV, Russo J (2007) Epithelial to mesenchymal transition during breast cancer progression. Int J Oncol 31:823–827

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Work supported by grant U01 ES/CA 12771 from the National Institute of Environmental Health Sciences (NIEHS) and the National Cancer Institute (NCI), NIH, DHHS. Its contents are solely the responsibility of the authors and do not necessarily represent the official views of the NIEHS or NCI, NIH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jose Russo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Russo, J., Russo, I.H. (2011). The Role of the Basal Stem Cell of the Human Breast in Normal Development and Cancer. In: Rhim, J., Kremer, R. (eds) Human Cell Transformation. Advances in Experimental Medicine and Biology, vol 720. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-0254-1_10

Download citation

Publish with us

Policies and ethics