Skip to main content

Thermodynamic Properties of Neon for Temperatures from the Triple Point to 700 K at Pressures to 700 MPa

  • Chapter
Advances in Cryogenic Engineering

Part of the book series: Advances in Cryogenic Engineering ((ACRE,volume 31))

Abstract

The published experimental data on the thermodynamic properties of neon have been used as the basis for a new thermodynamic property formulation for neon. The new correlation uses a fundamental equation (equation of state) explicit in Helmholtz energy, which provides for the calculation of derived thermodynamic properties by differentiation. The fundamental equation for neon is a subset of a larger comprehensive function which has also been used in developing thermodynamic property formulations for other fluids of cryogenic interest including oxygen, nitrogen, argon, and ethylene. In addition, new equations for the vapor pressure, saturated liquid density, and saturated vapor density are presented. The formulation presented here may be used to calculate pressure, density, temperature, enthalpy, entropy, internal energy, isochoric and isobaric heat capacities, and velocity of sound for neon. Summary comparisons of properties calculated with the new formulation for neon with selected experimental data are included to verify the accuracy of the fundamental equation for calculation of thermodynamic properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Crommelin, C. A., Isothermals of monatomic substances and their binary mixtures. XX. Isothermals of neon from +20 C to -217 C, Communs. Phys. Lab Univ. Leiden, No. 154a: 108–117 (1918).

    Google Scholar 

  2. Gibbons, R. M., The equation of state of neon between 27 and 70 K, Cryogenics 9: 251–260 (Aug. 1969).

    Article  Google Scholar 

  3. Gladun, C., Some thermodynamic investigations into liquid neon isotope mixtures, Cryogenics 78–80 (Apr. 1967).

    Google Scholar 

  4. Holborn, L. and Otto, J., Uber die isothermen einiger gase zwischen +400 und − 183, Z. Physik 33: 1–11.

    Google Scholar 

  5. Lippold, H., Isothermal compressibility and density of liquid argon and neon up to pressures of 1000 Kg/cm2, Cryogenics 9 (2): 112 - 114 (1969).

    Article  Google Scholar 

  6. Maslennikova, V. YA., Egorov, A. N. and Tsiklis, D. S., Molar volumes and thermodynamic properties of neon at temperatures 25-150 C and pressures up to 7 Kbar, Sov. Phys. Dokl. 21 (8): 440–441 (Aug. 1976).

    Google Scholar 

  7. Michels, A. and Gibson, R. O., Isotherme times sugne dei höheren drucken11, Ann. Physik, 87: 850–876 (1982).

    Google Scholar 

  8. Michels, A., Wassenaar, T. and Louwerse, P., Isotherms of neon at temperatures between 0 C and 150 C and at densities up to 1100 amagat (pressures up to 2900 atmospheres), Physica 26: 539–543 (1960).

    Article  Google Scholar 

  9. Onosovskii, E. V., Investigation of compressibility of neon in the near-critical region, in “Thermophysical Properties of Matter and Substances,” 3, V. A. Rabinovich, ed., GS SSD, Moscow (1971), English Translation for the U.S. NBS Published by Amerind Publishing Co., New Delhi (1975), pp. 29–33.

    Google Scholar 

  10. Onosovskii, E. V. and Moroz, A. I., in “Thermophysical Properties of Matter and Substances,” 2, V. A. Rabinovich, ed., State Standard and Ref. Data Services, Moscow (1970).

    Google Scholar 

  11. Rabinovich, V. A., Tokina, L. A. and Berezin, V. M., Experimental determination of the compressibility of neon and argon at 300 to 720K for pressures up to 500 bar, Teplofizika Vysokikh Temperatur (USSR) 8(4):745–749 (July–Aug. 1970).

    Google Scholar 

  12. Scott, L. R., Density measurements for neon at low temperatures, Ph.D. Thesis, Michigan Univ., Ann Arbor (1967).

    Google Scholar 

  13. Streett, W. B., Pressure-volume-temperature data for neon from 80-130 K and pressures to 2000 atmospheres, J. Chem. Engr. Data 16 (3): 289–292 (1971).

    Google Scholar 

  14. Sullivan, J. A. and Sonntag, R. E., P-v-T behavior of neon at temperatures from 70 to 120 K and pressures to 300 Atm, in: “Advances in Cryogenic Engr.,” Vol. 12, (Proc. 1966 Cryogenic Engr. Conf.) Plenum Press, New York (1967), pp. 706–713

    Chapter  Google Scholar 

  15. Fleury, P. A. and Boon, J. P., Brillouin scattering in simple liquids: argon and neon, Phys. Rev., 186 (1): 244–254 (Oct. 1969).

    Article  Google Scholar 

  16. Gusewell, D., Schmeissner, F. and Schmid, J., Density and sound velocity of saturated liquid neon-hydrogen and neon-deuterium mixtures between 25 and 31 K, Cryogenics 10: 150–154 (1970).

    Article  Google Scholar 

  17. Larson, E. V., Naugle, D. G. and Adair, T. W. III., Ultrasonic velocity and attenuation in liquid neon, J. Chem. Phys. 54 (6): 2429–2436 (Mar. 1971).

    Article  Google Scholar 

  18. Naugle, D. H., Properties of liquid neon derived from sound velocity measurements, J. Chem. Phys. 56 (11): 5730–5732 (June 1972).

    Article  Google Scholar 

  19. Keesom, W. H. and Van Lammeren, J. A., Measurements on the velocity of sound in neon gas, Physica, 1: 1161–1170 (1934).

    Article  Google Scholar 

  20. Pashkov, V. V. and Konovodchenko, E. V., Ultrasonic velocity in liquid neon, Sov. J. Low Temp. Phys. 4 (5): 277–280 (May 1978).

    Google Scholar 

  21. Pitaevskaya, L. L. and Bilevich, A. V., The velocity of sound in compressed neon, High Temperatures — High Pressures 5: 459–461 (1973).

    Google Scholar 

  22. Gladun, C., Spezifische warme bei konstantem volumen, temperatur, molvolumen and druck, Ph.D. Thesis, Univ. of Dresden, Private Communication (1980).

    Google Scholar 

  23. Wagner, W., Eine mathematisch statistische methode zum aufstellen thermodynamischer gleischungen-gezeight am beispiel der dampfdruckkurve reiner fluiden stoffe, VDI-X 3: 39 (1974).

    Google Scholar 

  24. de Reuck, K. M. and Armstrong, B., A method of correlation using a search procedure based on a stepwise least-squares technique, and its application to an equation of state for propylene”, Cryogenics 505–512 (Sept. 1979).

    Google Scholar 

  25. Schmidt and Wagner, W., A new form of the equation of state for pure substances and its application to oxygen, Fluid Phase Equilibria 19: 175–200 (1985).

    Article  Google Scholar 

  26. Katti, R., and Jacobsen, R. T, “Thermodynamic Properties of Neon in the Critical Region,” Center for Applied Thermodynamic Studies Report, ( Manuscript in Progress, Aug. 1985 ).

    Google Scholar 

  27. IUPAC, Atomic weight of the elements 1975, Pure and Appli. Chem. 47: 75–85 (1976).

    Google Scholar 

  28. CODATA Bulletin No. 10, December 1973.

    Google Scholar 

  29. Bigeleisen, J. and Roth, E., Vapor pressures of the neon isotopes, J. Chem. Physics, 35 (1): 68–77 (July 1961).

    Article  Google Scholar 

  30. Grilly, E. R., The vapour pressure of solid and liquid neon, Cryogenics 2 (4): 226–229 (1962).

    Article  Google Scholar 

  31. Ancsin, J., Vapour pressures and triple point of neon and the influence of impurities on these properties, Metrologia 14: 1–7 (1978).

    Article  Google Scholar 

  32. Mathias, E., Crommelin, C. A. and Kamerlingh Onnes, H., Le diameter rectiligue du neon, Communs. Phys. Lab. Univ. Leiden 162b: 14–20 (1923).

    Google Scholar 

  33. Streett, W. B., “An experimental study of the equation of state of liquid mixtures of neon + normal hydrogen, J. Chem. Thermodynamics 5: 311–323 (1973).

    Google Scholar 

  34. Kurilenok, K. V., Orlova, M. P., Medvedev, V. A. and Nikolskaya, N. B. Heat of vaporization and density of saturated neon vapor, in: “Thermophysical Properties of Matter and Substances,” 9, V. A. Rabinovich, ed., (1976), pp. 135–141.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Plenum Press, New York

About this chapter

Cite this chapter

Katti, R., Jacobsen, R.T., Stewart, R.B., Jahangiri, M. (1986). Thermodynamic Properties of Neon for Temperatures from the Triple Point to 700 K at Pressures to 700 MPa. In: Fast, R.W. (eds) Advances in Cryogenic Engineering. Advances in Cryogenic Engineering, vol 31. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2213-9_132

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-2213-9_132

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9299-9

  • Online ISBN: 978-1-4613-2213-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics