Skip to main content

Semidefinite Relaxations, Multivariate Normal Distributions, and Order Statistics

  • Chapter
Handbook of Combinatorial Optimization

Abstract

Given the symmetric matrix \(Q = \left\{ {qij} \right\} \in {R^{n \times n}}\) and the constraint matrix \(A = \left\{ {{a_{ij}}} \right\} \in {R^{m \times n}}\), we consider the quadratic programming (QP) problem with linear and boolean constraints

$$\begin{array}{l} Maximize q\left( x \right): = x'Qx\\ subject to \left| {\sum\limits_{j = 1}^n {{a_{ij}}{x_j}} } \right| = {b_i} = 1,...,m,\\ x_j^2 = 1,j = 1,...,n. \end{array}$$
(QP)

Note that the constraint x 2 j =1 will force x j = 1 or x j = −1, making it a boolean variable.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. F. Alizadeh, Combinatorial optimization with interior point methods and semi-definite matrices, PhD thesis, University of Minnesota, Minneapolis, MN, 1991.

    Google Scholar 

  2. M. Bellare and P. Rogaway, “The complexity of approximating a nonlinear program,” Mathematical Programming 69 (1995) 429–442.

    MATH  MathSciNet  Google Scholar 

  3. S. Benson Y. Ye and X. Zhang, “Solving large-scale sparse semidefinite programs for combinatorial optimization,” Working Paper, Computational and Applied Mathematics, The University of Iowa, Iowa City, IA 52242, 1997.

    Google Scholar 

  4. D. Bertsimas, C. Teo and R. Vohra, “On dependent randomized rounding algorithms,” Proc. 5th IPCO Conference (1996) 330–344.

    Google Scholar 

  5. D. Bertsimas, C. Teo and R. Vohra, “Nonlinear relaxations and improved randomized approximation algorithms for multicut problems,” Proc., nth IPCO Conference (1995) 29–39.

    Google Scholar 

  6. A. Frieze and M. Jerrum, “Improved approximation algorithms for max k-cut and max bisection,” Proc. 4th IPCO Conference (1995) 1–13.

    Google Scholar 

  7. L. E. Gibbons, D. W. Hearn and P. M. Pardalos, “A continuous based heuristic for the maximum clique problem,” DIMACS Series in Discrete Mathematics and Theoretical Computer Science 26 (1996) 103–124.

    MathSciNet  Google Scholar 

  8. M. X. Goemans and D. P. Williamson, “ Improved approximation algorithms for Maximum Cut and Satisfiability problems using semidefinite programming,” Journal of ACM 42 (1995) 1115–1145.

    Article  MATH  MathSciNet  Google Scholar 

  9. C. Helmberg and F. Rendl, “A spectral bundle method for semidefinite programming,” ZIB Preprint SC 97–37, Konrad-Zuse-Zentrum fuer Informationstechnik Berlin, Takustrasse 7, D-14195 Berlin, Germany, August 1997.

    Google Scholar 

  10. N. Johnson and S. Kotz, Distributions in Statistics: Continuous Multivariate Distributions, John Wiley & Sons, 1972.

    Google Scholar 

  11. L. Lovâsz and A. Shrijver, “Cones of matrices and setfunctions, and 0 — 1 optimization,” SIAM Journal on Optimization 1 (1990) 166–190.

    Article  Google Scholar 

  12. Yu. E. Nesterov, “Quality of semidefinite relaxation for nonconvex quadratic optimization,” CORE Discussion Paper, #9719, Belgium, March 1997.

    Google Scholar 

  13. Yu. E. Nesterov and A. S. Nemirovskii, Interior Point Polynomial Methods in Convex Programming: Theory and Algorithms, SIAM Publications, SIAM, Philadelphia, 1993.

    Google Scholar 

  14. Yu. E. Nesterov, M. J. Todd, and Y. Ye, “Infeasible-start primal-dual methods and infeasibility detectors for nonlinear programming problems,” Technical Report No. 1156, School of Operations Research and and Industrial Engineering, Cornell University, Ithaca, NY 14853–3801, 1996, to appear in Mathematical Programming.

    Google Scholar 

  15. W. F. Sheppard, “On the calculation of the double integral expressing normal correlation,” Transactions of the Cambridge Philosophical Society 19 (1900) 23–66.

    Google Scholar 

  16. Y. L. Tong, The Multivariate Normal Distribution, Springer-Verlag, New York, 1990.

    Book  MATH  Google Scholar 

  17. Y. Ye, “Approximating quadratic programming with quadratic con-straints,” Working Paper, Department of Management Science, The University of Iowa, Iowa City, IA 52242, 1997, to appear in Mathematical Programming.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Kluwer Academic Publishers

About this chapter

Cite this chapter

Bertsimas, D., Ye, Y. (1998). Semidefinite Relaxations, Multivariate Normal Distributions, and Order Statistics. In: Du, DZ., Pardalos, P.M. (eds) Handbook of Combinatorial Optimization. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0303-9_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0303-9_24

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7987-4

  • Online ISBN: 978-1-4613-0303-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics