Skip to main content

Mixed-Integer Nonlinear Optimization in Process Synthesis

  • Chapter
Handbook of Combinatorial Optimization

Abstract

The use of networks allows the representation of a variety of important engineering problems. The treatment of a particular class of network applications, the process synthesis problem, is exposed in this paper. Process Synthesis seeks to develop systematically process flowsheets that convert raw materials into desired products. In recent years, the optimization approach to process synthesis has shown promise in tackling this challenge. It requires the development of a network of interconnected units, the process superstructure, that represents the alternative process flowsheets. The mathematical modeling of the superstructure has a mixed set of binary and continuous variables and results in a Mixed-Integer optimization model. Due to the nonlinearity of chemical models, these problems are generally classified as Mixed-Integer Nonlinear Programming (MINLP) problems.

A number of local optimization algorithms, developed for the solution of this class of problems, are presented in this paper: Generalized Benders Decomposition (GBD), Outer Approximation (OA), Generalized Cross Decomposition (GCD), Branch and Bound (BB), Extended Cutting Plane (ECP), and Feasibility Approach (FA). Some recent developments for the global optimization of nonconvex MINLPs are then introduced. In particular, two branch-and-bound approaches are dis-cussed:the Special structure Mixed Integer Nonlinear αBB (SMIN-αBB), where the binary variables should participate linearly or in mixed-bilinear terms, and the General structure Mixed Integer Nonlinear αBB (GMIN- αBB), where the continuous relaxation of the binary variables must lead to a twice-differentiable problem. Both algorithms are based on the αBB global optimization algorithm for nonconvex continuous problems.

Once the theoretical issues behind local and global optimization algorithms for MINLPs have been exposed, attention is directed to their algorithmic development and implementation. The framework MINOPT is discussed as a computational tool for the solution of process synthesis problems. It is an implementation of a number of local optimization algorithms for the solution of MINLPs. The use of MINOPT is illustrated through the solution of a variety of process network problems. The synthesis problem for a heat exchanger network is then presented to demonstrate the global optimization SMIN-αBB algorithm.

Author to whom all correspondence should be addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C.S.Adjiman,I.P.Androulakis,and C.A.Floudas,Global optimization of MINLP problems in process synthesis and design,Comput.Chem.Eng.21 (1997a),S445–S450.

    Article  Google Scholar 

  2. C.S.Adjiman,I.P.Androulakis,and C.A.Floudas,A global optimization method,αBB,for general twice-differentiable NLPs - II.Implementation and computational results,accepted for publication,1997b.

    Google Scholar 

  3. C.S.Adjiman,I.P.Androulakis,C.D.Maranas,and C.A.Floudas,A global optimisation method,αBB,for process design,Comput.Chem.Eng.Suppl.20 (1996),S419–S424.

    Article  Google Scholar 

  4. C.S.Adjiman,S.Dallwig,C.A.Floudas,and A.Neumaier,A global optimization method,αBB,for general twice-differentiable NLPs - I.Theoretical advances,accepted for publication,1997.

    Google Scholar 

  5. A.Aggarwal and C.A.FloudasSynthesis of general distillation sequences-nonsharp separations,Comput.Chem.Eng.14 (1990),no.6,631–653.

    Article  Google Scholar 

  6. C.S.Adjiman and C.A.FloudasRigorous convex underestimators for general twice-differentiable problems,J. Glob.Opt.9 (1996),23–40.

    Google Scholar 

  7. F.A.Al-KhayyalJointly constrained bilinear programs and related problems: An overview,Comput.Math.Applic.19 (1990),no.11,53–62.

    Article  MATH  MathSciNet  Google Scholar 

  8. F.A.Al-Khayyal and J.E.Falk,Jointly constrained biconvex programming,Math.of Oper.Res.8 (1983),273–286.

    Google Scholar 

  9. I.P.Androulakis,C.D.Maranas,and C.A.Floudas,αBB: A global optimization method for general constrained nonconvex problems,J.Glob.Opt.7 (1995),337–363.

    Article  MATH  MathSciNet  Google Scholar 

  10. E.BalasDisjunctive programming and a hierarchy of relaxations for discrete optimization problems,SIAM Journal on Algebraic and Discrete Methods 6 (1985),466–486.

    Google Scholar 

  11. E.M.L.Beale,The State of the Art in Numerical Analysis,ch.Integer programming,pp.409–448,Academic Press,1977,pp.409–448.

    Google Scholar 

  12. N.Beaumont,An algorithm for disjunctive programs,European Journal of Operations Research48 (1990),no.3,362–371.

    Article  MATH  Google Scholar 

  13. J.F.BendersPartitioning procedures for solving mixed-variables programming problems,Numer.Math.4 (1962),238.

    Google Scholar 

  14. M.Benichou,J.M.Gauthier,P.Girodet,G.Hentges,G.Ribiere,and O.Vincent,Experiments in mixed-integer linear programming,Math.Prog.1 (1971),no.1,76–94.

    Article  MATH  MathSciNet  Google Scholar 

  15. Anthony Brooke,David Kendrick,and Alexander Meeraus,Gams:A user’s guide,Boyd Fraser,Danvers,MA,1992.

    Google Scholar 

  16. B.Borchers and J.E. Mitchell An improved branch and bound algorithm for mixed integer nonlinear programs,Tech.Report RPI Math Report No.200,Renssellaer Polytechnic Institute,1991.

    Google Scholar 

  17. M.A.Duran and I.E.GrossmannAn outer-approximation algorithm for a class of mixed-integer nonlinear programs,Math.Prog.36 (1986),307–339.

    Article  MATH  MathSciNet  Google Scholar 

  18. C.A.Floudas,A.Aggarwal,and A.R.Ciric,Global optimal search for nonconvex NLP and MINLP problems,Comput.Chem.Eng.13 (1989),no.10,1117.

    Google Scholar 

  19. R.Fletcher and S.LeyfferSolving mixed integer nonlinear programs by outer approximation,Math.Prog.66 (1994),no.3,327.

    Google Scholar 

  20. C.A.FloudasNonlinear and mixed integer optimization: Fundamentals and applications,Oxford University Press,1995.

    Google Scholar 

  21. A.M.Geoffrion,Generalized benders decomposition,J.Opt.Theory Applic.10 (1972),no.4,237–260.

    Google Scholar 

  22. F.GloverImproved linear integer programming formulations of nonlinear integer problems,Management Sci.22 (1975),no.4,445.

    Google Scholar 

  23. O.K.Gupta and R.RavindranBranch and bound experiments in convex nonlinear integer programing,Management Sci.31 (1985),no.12,1533–1546.

    Article  MATH  MathSciNet  Google Scholar 

  24. O.K.GuptaBranch and bound experiments in nonlinear integer programming,Ph.D.thesis,Purdue University,1980.

    Google Scholar 

  25. K.HolmbergOn the convergence of the cross decomposition Math.Prog.47 (1990),269.

    Google Scholar 

  26. J.E.Kelley,On the convergence of the cross decomposition,Math.Prog.47(1990),269.

    Google Scholar 

  27. G.R.Kocis and I.E.Grossmann,Relaxation strategy for the structural optimization of process flow sheets,Ind.Eng.Chem.Res.26 (1987),no.9,1869.

    Google Scholar 

  28. G.R.Kocis and I.E.Grossmann,A modelling and decomposi-tion strategy for the MINLP optimization of process flowsheets,Comput.Chem.Eng.13 (1989),no.7,797–819.

    Article  Google Scholar 

  29. E.L.Lawler and D.E.Wood,Branching and bound methods: Asurvey,Oper.Res.(1966),no.14,699–719.

    Google Scholar 

  30. G.P.McCormick,Computability of global solutions to factorable nonconvex programs: Part I - convex underestimating problems,Math.Prog.10 (1976),147–175.

    Google Scholar 

  31. H.Mawengkang and B.A.Murtagh,Solving nonlinear integer programs with large-scale optimization software,Annals of Operations Research 5 (1985),no.6,425–437.

    Google Scholar 

  32. H.Mawengkang and B.A.Murtagh,Solving nonlinear integer programs with large scale optimization software,Ann.of Oper.Res.5 (1986),425.

    Google Scholar 

  33. R.E.Moore,Interval analysis,Prentice-Hall,Englewood Cliffs,NJ,1979.

    Google Scholar 

  34. Bruce A.Murtagh and Michael A.Saunders,Minos 5.4 user’s guide,Systems Optimization Laboratory,Department of Operations Research,Stanford University,1993,Technical Report SOL 83–20R.

    Google Scholar 

  35. A.Neumaier,Interval methods for systems of equations,Encyclopedia of Mathematics and its Applications,Cambridge University Press,1990.

    Google Scholar 

  36. G.M.Ostrovsky,M.G.Ostrovsky,and G.W.Mikhailow,Discrete optimization of chemical processes,Comput.Chem.Eng.14 (1990),no.1,111.

    Google Scholar 

  37. G.E.Paules,IV and C.A.Floudas,APROS: Algorithmic development methodology for discrete-continuous optimization problems,Oper.Res.37 (1989),no.6,902–915.

    Article  MATH  Google Scholar 

  38. I.Quesada and I.E.GrossmannAn LP/NLP based branch and ound algorithm for convex MINLP optimization problems,Comput.Chem.Eng.16 (1992),no.10/11,937–947.

    Google Scholar 

  39. R.Raman and I.E.GrossmannModeling and computational echniques for logic based integer programming,Comput.Chem.Eng.18 (1994),563–578.

    Google Scholar 

  40. H.Ratschek and J.RokneComputer methods for the range of unctions,Ellis Horwood Series in Mathematics and its Applications,Halsted Press,1988.

    Google Scholar 

  41. H.S.Ryoo and N.V. SahinidisGlobal optimization of nonconvex LPs and MINLPs with applications in process design,Comput.Chem.Eng.19 (1995),no.5,551–566.

    Google Scholar 

  42. C.A.Schweiger and C.A.FloudasInteraction of design and ontrol: Optimization with dynamic models,Optimal Control: Theory,Algorithms,and Applications (W.W.Hager and P.M.Pardalos,eds.),Kluwer Academic Publishers,1997,accepted for publication.

    Google Scholar 

  43. C.A.Schweiger and C.A.FloudasMINOPT: A software package for mixed-integer nonlinear optimization,Princeton University,Princeton,NJ 08544–5263,1997,Version 2.0.

    Google Scholar 

  44. H.Skrifvars,I. Harjunkoski,T.Westerlund,Z.Kravanja,and R.P?rn,Comparison of different MINLP methods applied on certain chemical engineering problems,Comput.Chem.Eng.Suppl.20 (1996),S333–S338.

    Google Scholar 

  45. E.M.B.Smith and C.C.PantelidesGlobal optimisation of nonconvex minlps,Comput.Chem.Eng.21 (1997),S791–S796.

    Google Scholar 

  46. M.Türkay and I. E.GrossmannLogic-based MINLP algorithmsfor the optimal synthesis of process networks,Comput.Chem.Eng.20 (1996),no.8,959–978.

    Google Scholar 

  47. R.Vaidyanathan and M.El-Halwagi,Global optimization of non-convex MINLP’s by interval analysis,Global Optimization in Engineering Design (I.E.Grossmann,ed.),Kluwer Academic Publishers,1996,pp.175–193.

    Google Scholar 

  48. J.Viswanathan and I.E.Grossmann,A combined penalty function and outer approximation method for MINLP optimization,Comput.Chem.Eng.14 (1990),no.7,769–782.

    Article  Google Scholar 

  49. T.Westerlund and F.PetterssonAn extended cutting planemethod for solving convex MINLP problems,Comput.Chem.Eng.Suppl.19 (1995),131–136.

    Article  Google Scholar 

  50. T.Westerlund,F.Pettersson,and I.E.Grossmann,Optimization of pump configuration problems as a MINLP probem,Comput.Chem.Eng.18 (1994),no.9,845–858.

    Article  Google Scholar 

  51. T.F.Yee and I.E.GrossmannSimultaneous optimization modelfor heat exchanger network synthesis,Chemical Engineering Optimization Models with GAMS (I.E.Grossmann,ed.),CACHE Design Case Studies Series,vol.6,1991.

    Google Scholar 

  52. J.M.Zamora and I.E.GrossmannA comprehensive global optimization approach for the synthesis of heat exchanger networks with no stream splits,Comput.Chem.Eng.21 (1997),S65–S70.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Kluwer Academic Publishers

About this chapter

Cite this chapter

Adjiman, C.S., Schweiger, C.A., Floudas, C.A. (1998). Mixed-Integer Nonlinear Optimization in Process Synthesis. In: Du, DZ., Pardalos, P.M. (eds) Handbook of Combinatorial Optimization. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0303-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0303-9_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7987-4

  • Online ISBN: 978-1-4613-0303-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics