Skip to main content

Evolution of the Central Auditory System in Reptiles and Birds

  • Chapter

Abstract

Birds and reptiles are considered together in a single chapter because of their close phylogenetic relationship (Fig. 25.1). Despite differences in their auditory periphery, the central auditory pathways in the birds and reptiles are very similar. Furthermore, the different reptile groups (turtles, lizards, and crocodilians) make suitable outgroups for evolutionary comparisons with each other and with birds, enabling us to identify both ancestral and derived features of the auditory system.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arends JJA (1981) Sensory and motor aspects of the trigeminal system in the mallard (Anas platyrhonchos L.). State Univ of Leiden, Netherlands.

    Google Scholar 

  • Arends JJA, Zeigler HP (1986) Anatomical identification of an auditory pathway from a nucleus of the lateral lamniscal system to the frontal telencephalon (nucleus basalis) of the pigeon. Brain Res 398:375–381.

    Article  PubMed  CAS  Google Scholar 

  • Balaban CD, Ulinski PS (1981) Organization of thalamic afferents to anterior dorsal ventricular ridge in turtles. I. Projections of thalamic nuclei. J Comp Neurol 200:95–129.

    Article  PubMed  CAS  Google Scholar 

  • Barbas-Henry HA, Lohman AHM (1986) Primary projections and efferent cells of the VHIth cranial nerve in the monitor lizard, Varanus exanthematicus. Brain Res 398:375–381.

    Article  Google Scholar 

  • Belekhova MG, Zharskaja VD, Khachunys AS, Gaidaenko GV, Tumanova NL (1985) Connections of the mesencephalic, thalamic and telencephalic auditory centers in turtles. Some structural bases for audiosomatic interrelations. J Hirnforsch 26:127–152.

    PubMed  CAS  Google Scholar 

  • Biederman-Thorson M (1970) Auditory responses of units in the ovoid nucleus and cerebrum (Field L) of the ring dove. Brain Res 24:247–256.

    Article  PubMed  CAS  Google Scholar 

  • Bigalke-Kunz B, Rübsamen R, Dörrscheidt GJ (1987) Tonotopic organization and functional characterization of the auditory thalamus in a songbird, the European starling. J Comp Physiol 161:255–265.

    Article  CAS  Google Scholar 

  • Bonke BA, Bonke D, Scheich H (1979) Connectivity of the auditory forebrain nuclei in the guinea fowl (Numida meleagris). Cell Tissue Res 200:101–121.

    Article  PubMed  CAS  Google Scholar 

  • Boord RL (1968) Ascending projections of the primary cochlear nuclei and nucleus laminaris in the pigeon. J Comp Neurol 133:523–542.

    Article  PubMed  CAS  Google Scholar 

  • Boord RL, Rasmussen GL (1963) Projection of the cochlear and lagenar nerves on the cochlear nuclei of the pigeon. J Comp Neurol 120:462–475.

    Article  Google Scholar 

  • Bottjer SW, Arnold AP (1982) Afferent neurons in the hypoglossal nerve of the zebra finch (Poephila guttata): Localization with horseradish peroxidase. J Comp Neurol 210:190–197.

    Article  PubMed  CAS  Google Scholar 

  • Bottjer SW, Arnold AP (1984) The role of feedback from the vocal organ. I. Maintenance of stereotypical vocalizations by adult zebra finches. J Neurosci 4: 2387–2396.

    PubMed  CAS  Google Scholar 

  • Bottjer SW, Arnold AP (1986) The ontogeny of vocal learning in songbirds. In: Blass EM (ed) Handbook of Behavioral Neurobiology. New York: Plenum Press, pp. 129–161.

    Google Scholar 

  • Bottjer SW, Halsema KA, Brown SA, Miesner EA (1989) Axonal connections of a forebrain nucleus involved with vocal learning in Zebra Finches. J Comp Neurol 279:312–326.

    Article  PubMed  CAS  Google Scholar 

  • Brauth SE (1990) Investigation of central auditory nuclei in the budgerigar with cytochrome oxidase histochemistry. Brain Res 508:142–146.

    Article  PubMed  CAS  Google Scholar 

  • Brauth SE, McHale CM, Brasher CA, Dooling RJ (1987) Auditory pathways in the Budgerigar. Brain Behav Evol 30:174–199.

    Article  PubMed  CAS  Google Scholar 

  • Brauth SE, McHale CM (1988) Auditory pathways in the budgerigar. II. Intratelencephalic pathways. Brain Behav Evol 32:193–207.

    Article  PubMed  CAS  Google Scholar 

  • Brawer JR, Morest DK, Kane EC (1974) The neuronal architecture of the cochlear nucleus of the cat. J Comp Neurol 155:251–300.

    Article  PubMed  CAS  Google Scholar 

  • Brown JL (1971) An exploratory study of vocalization areas in the brain of the red-winged blackbird (Agelius phoenicerus). Behavior 24:91–127.

    Article  Google Scholar 

  • Browner RH, Kennedy MC, Facelle T (1981) The cytoarchitecture of the torus semicircularis in the red-eared turtle. J Morphol 169:207–223.

    Article  Google Scholar 

  • Browner RH, Pierz DM (1986) Endbulbs of Held in a cochlear nucleus, nucleus magnocellularis in the redeared turtle, Chrysemys scripta elegans. Soc Neurosci Abstr 12:1265.

    Google Scholar 

  • Browner RH, Marbey D (1988) The nucleus magnocellularis in the red-eared turtle, Chrysemys scripta elegans: Eighth nerve endings and neuronal types. Hearing Res 33:257–272.

    Article  CAS  Google Scholar 

  • Bruce LL, Butler AB (1984) Telencephalic connections in lizards. II. Projections to anterior dorsal ventricular ridge. J Comp Neurol 229:602–615.

    Article  PubMed  CAS  Google Scholar 

  • Calford MB, Piddington RW (1988) Avian interaural canal enhances interaural delay. J Comp Physiol 162: 503–510.

    Article  Google Scholar 

  • Carr CE (1986) Time coding in electric fish and owls. Brain Behav Evol 28:122–133.

    Article  PubMed  CAS  Google Scholar 

  • Carr CE (1989) Comparative anatomy of the brainstem auditory pathways in owls. In: Georg Thieme Verlag (eds). Neural mechanisms of behavior. Proceedings of the 2nd international congress of neuroethology, Stuttgart: Springer-Verlag, pp. 116.

    Google Scholar 

  • Carr CE, Konishi M (1988) Axonal delay lines for time measurement in the owl’s brainstem. Proc Natl Acad Sei USA 85:8311–8315.

    Article  CAS  Google Scholar 

  • Carr CE, Fujita I, Konishi M (1989) Distribution of GABAergic neurons and terminals in the auditory system of the barn owl. J Comp Neurol 286: 190–207.

    Article  PubMed  CAS  Google Scholar 

  • Carr CE, Konishi M (1990) A circuit for detection of interaural time differences in the brainstem of the barn owl. J Neurosci 10:3227–3246.

    PubMed  CAS  Google Scholar 

  • Carroll RL (1987) Vertebrate paleontology and evolution. New York: W.H. Freeman & Co.

    Google Scholar 

  • Coles RB, Aitkin LM (1979) The response properties of auditory neurones in the midbrain of the domestic fowl (Gallus gallus) to monaural and binaural stimuli. J Comp Physiol 134:241–251.

    Article  Google Scholar 

  • Coles RB, Guppy A (1988) Directional hearing in the barn owl (Tyto alba). J Comp Physiol 163:117–133.

    Article  CAS  Google Scholar 

  • Conlee JW, Parks TN (1986) Origin of ascending auditory projections to the nucleus mesencephalicus lateralis pars dorsalis in the chicken. Brain Res 367:96–113.

    Article  PubMed  CAS  Google Scholar 

  • Crawford AC, Fettiplace R (1980) The frequency selectivity of auditory nerve fibers and hair cells in the cochlea of the turtle. J Physiol 306:79–125.

    PubMed  CAS  Google Scholar 

  • DeFina AV, Webster DB (1974) Projections of the intraotic ganglion to the medullary nuclei in the Tegu lizard, Tupinambis nigropunctatus. Brain Behav Evol 10:197–211.

    Article  PubMed  CAS  Google Scholar 

  • Dodd F, Capranica RR (1989) Frequency and temporal selectivity of single auditory nerve fibers in the tokay gecko. Soc Neurosci Abst 15:348.

    Google Scholar 

  • Dooling RJ, Brown SD, Park TJ, Okanoya K (1990) Natural perceptual categories for vocal signals in budgerigars (Melopsittacus undulatus). In: Stebbins WC, Berkley MA (eds) Comparative perception Vol. II: Complex signals. New York: John Wiley and Sons, pp. 345–374.

    Google Scholar 

  • Doupe A, Konishi M (1989) Auditory properties of song nuclei of estrildid finches. Soc Neurosci Abstr 15:347.

    Google Scholar 

  • Du Lac S, Knudsen EI (1990) Neural maps of head movement vector and speed in the optic tectum of the barn owl. J Neurophysiol 63:131–146.

    PubMed  Google Scholar 

  • Fay RR (1988) Hearing in vertebrates: A psychophysics databook. Winnetka, Illinois: Hill-Fay Associates.

    Google Scholar 

  • Fekete DM, Rouiller EM, Liberman MC, Ryugo DK (1982) The central projections of intracellularly labeled auditory nerve fibers in cats. J Comp Neurol 229:432–450.

    Article  Google Scholar 

  • Fischer FP, Köppl C, Manley GA (1988) The basilar papilla of the barn owl Tyto alba: A quantitative morphological SEM analysis. Hearing Res 34:87–101.

    Article  CAS  Google Scholar 

  • Fleishman JL, Rand AS (1989) Caiman crocodilus does not require vision for underwater prey capture. J Herpetol 23:296.

    Article  Google Scholar 

  • Foster RJ, Hall WJ (1978) The organization of central auditory pathways in a reptile Iguana iguana. J Comp Neurol 178:783–832.

    Article  PubMed  CAS  Google Scholar 

  • Gans C, Maderson PFA (1973) Sound producing mechanisms in Recent Reptiles: Review and comment. Am Zoologist 13:1195–1203.

    Google Scholar 

  • Gans C, Wever EG (1972) The ear and hearing in Amphisbaenia (Reptilia). J Exp Zool 179:17–34.

    Article  Google Scholar 

  • Gans C, Wever EG (1976) The ear and hearing in Sphenodon punctatus. Proc Natl Acad Sei USA 73: 4244–4246.

    Article  CAS  Google Scholar 

  • Gleich O, Narins PM (1988) The phase response of primary auditory afferents in a songbird (Sturnus vulgaris L.). Hearing Res 32:81–92.

    Article  CAS  Google Scholar 

  • Gurney M (1981) Hormonal control of cell form and number in the zebra finch song system. J Neurosci 1:658–673.

    PubMed  CAS  Google Scholar 

  • Hall WC, Ebner FF (1970) Thalamotelencephalic projections in the turtle (Pseudemys scripta). J Comp Neurol 140:101–127.

    Article  PubMed  CAS  Google Scholar 

  • Haeseler C, Brix J, Manley GA (1989) Innervation patterns and spontaneous activity of afferent fibers to the chick’s lagenar macula. In: Eisner N, Singer W (eds) Dynamics and Plasticity in Neuronal Systems. Stuttgart: Thieme, p. 282.

    Google Scholar 

  • Harrison JM, Howe ME (1974) Anatomy of the afferent auditory nervous system in mammals. In: Kreidel WD, Neff WD (eds) Handbook of Sensory Physiology Vol 5/1. Berlin: Springer-Verlag, pp. 283–336.

    Google Scholar 

  • Hartline PH, Campbell HW (1969) Auditory and vibratory responses in the midbrains of snakes. Science 163:1221–1223.

    Article  PubMed  CAS  Google Scholar 

  • Heil P, Scheich H (1986) Effects of unilateral and bilateral cochlear removal on 2-deoxyglucose patterns in the chick auditory system. J Comp Neurol 252: 279–301.

    Article  PubMed  CAS  Google Scholar 

  • Hill KG, Stange G, Mo J (1989) Temporal synchronization in the primary auditory response in the pigeon. Hearing Res 39:63–74.

    Article  CAS  Google Scholar 

  • Hoogland PV (1982) Brainstem afferents to the thalamus in a lizard, Varanus exantematicus. J Comp Neurol 210:152–162.

    Article  PubMed  CAS  Google Scholar 

  • Hopson JA (1977) Relative brain size and behavior in arch-osaurian reptiles. Ann Rev Ecol System 8:429–448.

    Article  Google Scholar 

  • Hopson JA (1980) Relative brain size in dinosaurs. Implications for dinosaurian endothermy. In: Thomas RDK, Olson EC (eds) A Cold Look at the Warm-Blooded Dinosaurs. AAAS Selected Symposium, pp. 287–310.

    Google Scholar 

  • Jeffress LA (1984) A place theory of sound localization. J Comp Physiol Psychol 41:35–39.

    Article  Google Scholar 

  • Jhaverl S, Morest DK (1982) Neuronal architecture in nucleus magnocellularis of the chicken auditory system with observations on nucleus laminaris: A light and electron microscope study. Neuroscience 7:809–836.

    Article  Google Scholar 

  • Johnson DH (1980) The relationship between spike rate and synchrony in responses of auditory nerve fibers to single tones. J Acoust Soc Am 68:1115–1122.

    Article  PubMed  CAS  Google Scholar 

  • Karten HJ (1967) The organization of the ascending auditory pathway in the pigeon (Columba livia) I. Diencephalic projections of the inferior colliculus (nucleus mesencephali lateralis, pars dorsalis). Brain Res 6:409–427.

    Article  PubMed  CAS  Google Scholar 

  • Karten HJ (1968) The ascending auditory pathway in the pigeon (Columba livia) II. Telencephalic projections of the nucleus ovoidalis thalami. Brain Res 11: 134–153.

    Article  PubMed  CAS  Google Scholar 

  • Karten HJ, Hodos W (1967) A Stereotaxic Atlas of the Brain of the Pigeon (Columbia livea). Baltimore: Johns Hopkins Press.

    Google Scholar 

  • Karten HJ, Shimizu T (1989) The origins of neocortex: connections and lamination as distinct events in evolution. J Cognit Neurosci 1:291–301.

    Article  Google Scholar 

  • Katz LC, Gurney ME (1981) Auditory responses in the zebra finch’s motor system for song. Brain Res 211: 192–197.

    Article  Google Scholar 

  • Kelley DB, Nottebohm F (1979) Projections of a telencephalic auditory nucleus-Field L-in the canary. J Comp Neurol 183:455–470.

    Article  PubMed  CAS  Google Scholar 

  • Kennedy MC (1974) Auditory multiple-unit activity in the midbrain of the Tokay gecko (Gekko gekko, L.). Brain Behav Evol 10:257–264.

    Article  PubMed  CAS  Google Scholar 

  • Kennedy MC (1975) Vocalization elicited in a lizard by electrical stimulation of the midbrain. Brain Res 91: 321–325.

    Article  PubMed  CAS  Google Scholar 

  • Kennedy MC, Browner RH (1981) The torus semicircularis in a gekkonid lizard. J Morphol 169:259–274.

    Article  Google Scholar 

  • Kirsch M, Coles RB, Leppelsack H-J (1980) Unit recordings from a new auditory area in the frontal neostraitum of the awake starling (Sturnus vulgaris). Exp Brain Res 38:375–380.

    Article  PubMed  CAS  Google Scholar 

  • Klump GM, Windt W, Curio E (1986) The great tit’s (Parus major) auditory resolution in azimuth. J Comp Physiol 158:383–390.

    Article  Google Scholar 

  • Knudsen EI (1980) Sound localization in birds. In: Popper AN, Fay RR (eds) Comparative studies of hearing in vertebrates. Berlin: Springer Verlag, pp. 287–322.

    Google Scholar 

  • Knudsen EI, Konishi M, Pettigrew JD (1977) Receptive fields of auditory neurons in the owl. Science 198: 1278–1280.

    Article  PubMed  CAS  Google Scholar 

  • Knudsen EI (1983) Subdivisions of the inferior colliculus in the barn owl (Tyto alba). J Comp Neurol 218:174–186.

    Article  PubMed  CAS  Google Scholar 

  • Knudsen EI, Knudsen PF (1983) Space-mapped auditory projections from the inferior colliculus to the optic tectum in the barn owl (Tyto alba). J Comp Neurol 218:187–196.

    Article  PubMed  CAS  Google Scholar 

  • Knudsen EI, Konishi M (1978) A neural map of auditory space in the owl. Science 200:795–797.

    Article  PubMed  CAS  Google Scholar 

  • Knudsen EI, Konishi M (1979a) Mechanisms of sound localization in the barn owl (Tyto alba). J Comp Neurol 133:13–21.

    Google Scholar 

  • Knudsen EI, Konishi M (1979b) Sound localization by the barn owl (Tyto alba). J Comp Physiol 133:1–11.

    Article  Google Scholar 

  • Konishi M (1963) The role of auditory feedback in the vocal behavior of the domestic fowl. J Tierpsychol 20:349–367.

    Google Scholar 

  • Konishi M (1970) Comparative neurophysiological studies of hearing and vocalization in songbirds. J Comp Physiol 66:257–272.

    Google Scholar 

  • Konishi M (1973a) Development of auditory neuronal responses in avian embryos. Proc Natl Acad Sei USA 70:1795–1798.

    Article  CAS  Google Scholar 

  • Konishi M (1973b) How the owl tracks its prey. Am Scientist 61:414–424.

    Google Scholar 

  • Konishi M (1985) Birdsong: From behavior to neuron. Annu Rev Neurosci 8:125–170.

    Article  PubMed  CAS  Google Scholar 

  • Konishi M (1986) Centrally synthesized maps of sensory space. Trends Neurosci 9:163–168.

    Article  Google Scholar 

  • Konishi M (1989) Bird song for neurobiologists. Neuron 3:541–549.

    Article  PubMed  CAS  Google Scholar 

  • Konishi M, Sullivan WE, Takahashi T (1985) The owl’s cochlear nuclei process different sound localization cues. J Acoust Soc Am 78:360–364.

    Article  PubMed  CAS  Google Scholar 

  • Konishi M, Takahashi T, Wagner H, Sullivan WE, Carr CE (1988) Neurophysiological and anatomical substrates of sound localization. In: Edelman GM, Gall WE, Cowan WM (eds) Auditory function: Neurobiological Bases of Hearing. Neuroscience Institute. New York: John Wiley & Sons, pp. 721–745.

    Google Scholar 

  • Köppl C, Manley GA (1990) Peripheral auditory processing in the bobtail lizard Tiliqua rugosa. II. Tonotopic organization and innervation pattern of the basilar papilla. J Comp Physiol 167:101–112.

    Article  Google Scholar 

  • Köppl C, Manley GA (1990) Peripheral auditory processing in the bobtail lizard Tiliqua rugosa. II. Patterns of spontaneous and tone-evoked nerve-fiber activity. J Comp Physiol 167:113–127.

    Article  Google Scholar 

  • Kreithen ML, Quine DB (1979) Infrasound detection by the homing pigeon: A behavioral audiogram. J Comp Physiol 129:1–4.

    Article  Google Scholar 

  • Kroodsma DE (1984) Songs of the alder flycatcher (Empidonax alnorum) and willow flycatcher (Empidonax traillii) are innate. Auk 101:13–24.

    Google Scholar 

  • Künzle H (1986) Projections from the cochlear nuclear complex to rhombencephalic auditory centers and torus semicircularis in the turtle. Brain Res 379:307–319.

    Article  PubMed  Google Scholar 

  • Leake PA (1974) Central projections of the statoacoustic nerve in Caiman crocodilus. Brain Behav Evol 10:170–196.

    Article  PubMed  CAS  Google Scholar 

  • Leibler LM (1975) Monaural and binaural pathways in the ascending auditory system of the pigeon. PhD. Thesis, Massachusetts Institute of Technology.

    Google Scholar 

  • Leppelsack H-J, Vogt M (1976) Responses of auditory neurons in the forebrain of a songbird to stimulation with species specific sounds. J Comp Physiol 107: 263–274.

    Article  Google Scholar 

  • Leppelsack H-J (1978) Unit responses to species-specific sounds in the auditory forebrain center of birds. Fed Proc 37:2336–2341.

    PubMed  CAS  Google Scholar 

  • Leppelsack H-J, Schwartzkopff J (1972) Eigenschaften von aukutishen neuronen im kaudalen Neostriatum von vogeln. J Comp Physiol 80:137–140.

    Article  Google Scholar 

  • Lohman AHM, van Woerden-Verkley I (1978) Ascending connections to the forebrain in the tegu lizard. J Comp Neurol 182:555–594.

    Article  PubMed  CAS  Google Scholar 

  • Maekawa M (1987) Auditory responses in the nucleus basalis of the pigeon. Hearing Res 27:231–237.

    Article  CAS  Google Scholar 

  • Manley GA (1970a) Frequency sensitivity of auditory neurons in the Caiman cochlear nucleus. Zeit verg Physiol 66:251–256.

    Article  Google Scholar 

  • Manley GA (1970b) Comparative studies of auditory physiology in reptiles. Zeit verg Physiol 67:363–381.

    Article  Google Scholar 

  • Manley GA (1974) Activity patterns of neurons in the peripheral auditory system of some reptiles. Brain Behav Evol 10:244–256.

    Article  PubMed  CAS  Google Scholar 

  • Manley GA (1977) Response patterns and peripheral origin of auditory nerve fibres in the monitor lizard, Varanus bengalensis. J Comp Physiol 118:249–260.

    Article  Google Scholar 

  • Manley GA (1981) A review of the auditory physiology of reptiles. In: Autrum HE, Perl E, Schmidt RF (eds) Progress in Sensory Physiology. Berlin: Springer Verlag, pp. 49–134.

    Google Scholar 

  • Manley GA, Gleich O, Leppelsack H-J, Oeckinghaus H (1985) Activity patterns of cochlear ganglion neurons in the starling. J Comp Physiol 157:161–181.

    Article  CAS  Google Scholar 

  • Manley GA, Köppl C, Konishi M (1988) A neural map of interaural intensity difference in the brainstem of the barn owl. J Neurosci 8:2665–2677.

    PubMed  CAS  Google Scholar 

  • Manley GA, Köppl C, Johnstone BM (1990) Peripheral auditory processing in the bobtail lizard Tiliqua rugosa. I. Frequency tuning of auditory-nerve fibers. J Comp Physiol 167:88–99.

    Google Scholar 

  • Manley GA, Yates GK, Köppl C, Johnstone BM (1990) Peripheral auditory processing in the bobtail lizard Tiliqua rugosa. IV. Phase locking of auditory nerve fibers. J Comp Physiol 167:129–138.

    Article  Google Scholar 

  • Manley JA (1971) Single unit studies in the midbrain auditory area of Caiman. Zeit verg Physiol 71:255–261.

    Article  Google Scholar 

  • Marbey D, Browner RB (1983) A golgi impregnation study of the acoustic tubercle in the red-eared turtle, Chrysemys scripta elegans. Soc Neurosci Abstr 9:495.

    Google Scholar 

  • Marcellini DL (1978) The acoustic behavior of lizards. In: Greenberg N, MacLean PD (eds) Behavior and neurology of lizards. U.S. Department of Health, Education and Welfare, Rockville, MD, pp. 287–300.

    Google Scholar 

  • Margoliash D (1983) Acoustic parameters underlying the responses of song specific in the white-crowned sparrow. J Neurosci 3:1039–1057.

    PubMed  CAS  Google Scholar 

  • Marler P (1982) Avian and primate communication: The problem of natural categories. Neurosci Biobehav Rev 6:87–94.

    Article  PubMed  CAS  Google Scholar 

  • Marler P, Peters S (1981) Birdsong and speech: Evidence for special processing. In: Eimas P, Miller J (eds) Perspectives on the study of speech. Hillsdale, New Jersey: Ehrlbaum, pp. 75–112.

    Google Scholar 

  • Masino T, Knudsen EI (1990) Horizontal and vertical components of head movement are controlled by distinct neural circuits in the barn owl. Nature 345:434–437.

    Article  PubMed  CAS  Google Scholar 

  • McCasland JS (1987) Neuronal control of bird song production. J Neurosci 7:23–39.

    PubMed  CAS  Google Scholar 

  • Miller MR (1975) The cochlear nuclei of lizards. J Comp Neurol 159:375–406.

    Article  PubMed  CAS  Google Scholar 

  • Miller MR (1980a) The cochlear nuclei of snakes. J Comp Neurol 192:717–736.

    Article  PubMed  CAS  Google Scholar 

  • Miller MR (1980b) The reptilian cochlear duct. In: Popper AN, Fay RR (eds) Comparative studies of hearing in vertebrates. Berlin: Springer Verlag, pp. 169–204.

    Google Scholar 

  • Miller MR, Beck J (1988) Auditory hair cell innervational patterns in lizards. J Comp Neurol 271:604–628.

    Article  PubMed  CAS  Google Scholar 

  • Miller MR, Kasahara M (1979) The cochlear nuclei of some turtles. J Comp Neurol 185:221–236.

    Article  PubMed  CAS  Google Scholar 

  • Moiseff A (1989a) Bicoordinate sound localization by the barn owl. J Comp Physiol 164:637–644.

    Article  CAS  Google Scholar 

  • Moiseff A (1989b) Binaural disparity cues available to the barn owl for sound localization. J Comp Physiol 164:629–636.

    Article  CAS  Google Scholar 

  • Moiseff A, Konishi M (1981) Neuronal and behavioral sensitivity to binaural time differences in the owl. J Neurosci 1:40–48.

    PubMed  CAS  Google Scholar 

  • Moiseff A, Konishi M (1983) Binaural characteristics of units in the owl’s brainstem auditory pathway: Precursors of restricted spatial receptive fields. J Neurosci 2:2553–2562.

    Google Scholar 

  • Müller SC, Scheich H (1985) Functional organization of the avian auditory field L. J Comp Physiol 156:1–12.

    Article  Google Scholar 

  • Mulroy MJ (1987) Auditory stereocilia in the alligator lizard. Hearing Res 25:11–21.

    Article  CAS  Google Scholar 

  • Norberg RA (1978) Skull asymmetry, ear structure and function, and auditory localization in Tengmalm’s owl, Aegolius funerus (Linne). Philos Trans R Soc Lond 282:325–410.

    Article  Google Scholar 

  • Northcutt RG (1984) Evolution of the vertebrate central nervous system: patterns and processes. Am Zoologist 24:701–716.

    Google Scholar 

  • Nottebohm F, Stokes TM, Paton JA (1976) Central control of song in the canary, Serinus canarius. J Comp Neurol 207:344–357.

    Article  Google Scholar 

  • Nottebohm F (1980) Brain pathways for vocal learning in birds: A review of the first 10 years. Prog Pyscho-biol Physiol Psychol 9:85–124.

    Google Scholar 

  • Nottebohm F, Kelley DB, Paton JA (1982) Connections of vocal control nuclei in the canary telencephalon. J Comp Neurol 207:344–357.

    Article  PubMed  CAS  Google Scholar 

  • Olsen JF, Knudsen EI, Esterly SD (1989) Neural maps of interaural time and intensity differences in the optic tectum of the barn owl. J Neurosci 9:2591–2605.

    PubMed  CAS  Google Scholar 

  • Okuhata S, Saito N (1987) Synaptic connections of thalamo-cerebral vocal nuclei of the canary. Brain Res Bull 18:35–44.

    Article  PubMed  CAS  Google Scholar 

  • Parent A (1976) Striatal afferent connections in the turtle (Chrysemys picta) as revealed by retrograde axonal transport of horseradish peroxidase. Brain Res 108:25–36.

    Article  PubMed  CAS  Google Scholar 

  • Parks TN, Rubel EW (1975) Organization and development of brain stem auditory nucleus of the chicken: Organization of projections from N. magnocellularis to N. laminaris. J Comp Neurol 164:435–448.

    Article  PubMed  CAS  Google Scholar 

  • Paton JA, Manogue KR, Nottebohm F (1981) Bilateral organization of the vocal control pathway in the budgerigar, Melopsittacus undulatus. J Neurosci 1:1276–1288.

    Google Scholar 

  • Patterson WC (1966) Hearing in the turtle. J Audit Res 6:453–464.

    Google Scholar 

  • Payne RS (1971) Acoustic localization of prey by barn owls (Tyto alba). J Exp Biol 54:535–573.

    PubMed  CAS  Google Scholar 

  • Potash LM (1970) Neuroanatomical regions relevant to production and analysis of vocalization within the avian torus semicircularis. Experientia 26:257–264.

    Article  Google Scholar 

  • Pritz MB (1974a) Ascending connections of a thalamic auditory area in a crocodile, Caiman crocodilus. J Comp Neurol 153:199–214.

    Article  PubMed  CAS  Google Scholar 

  • Pritz MB (1974b) Ascending connections of a midbrain auditory area in a crocodile, Caiman crocodilus. J Comp Neurol 153:179–198.

    Article  PubMed  CAS  Google Scholar 

  • Pritz MB (1980) Parallels in the organization of auditory and visual systems in crocodiles. In: Ebbesson SOE (ed) Comparative Neurology of the Telencephalon. New York: Plenum Press, pp. 331–342.

    Google Scholar 

  • Rhode WS, Oertel D, Smith PH (1983) Physiological response properties of cells labeled intracellularly with horseradish peroxidase in cat ventral cochlear nucleus. J Comp Neurol 213:448–463.

    Article  PubMed  CAS  Google Scholar 

  • Rose C, Weiss TF (1988) Frequency dependence of synchronization of cochlear nerve fibers in the alligator lizard: Evidence for a cochlear origin of timing and non-timing neural pathways. Hearing Res 33: 151–166.

    Article  CAS  Google Scholar 

  • Rouiller EM, Ryugo DK (1984) Intracellular marking of physiologically characterized cells in the ventral cochlear nucleus of the cat. J Comp Neurol 225: 167–186.

    Article  PubMed  CAS  Google Scholar 

  • Rouiller EM, Cronin-Schreiber R, Fekete DM, Ryugo DK (1986) The central projections of intracellularly labeled auditory nerve fibers in cats: an analysis of terminal morphology. J Comp Neurol 249:261–278.

    Article  PubMed  CAS  Google Scholar 

  • Rubel EW, Parks TN (1975) Organization and development of brainstem auditory nuclei of the chicken: Tonotopic organization of N. magnocellularis and N. laminaris. J Comp Neurol 164:411–434.

    Article  PubMed  CAS  Google Scholar 

  • Rubel EW, Parks TN (1988a) Organization and development of the avian brainstem auditory system. In: Edelman GM, Gall WE, Cowan WM (eds) Auditory function: Neurobiological Bases of Hearing. Neuroscience Institute, New York: John Wiley & Sons, pp. 3–92.

    Google Scholar 

  • Rübsamen R, Dörrscheidt GJ (1986) Tonotopic organization of the auditory forebrain in a songbird, the European starling. J Comp Physiol 158:639–646.

    Article  Google Scholar 

  • Rubel EW, Smith ZDJ, Miller LC (1975) Organization and development of brain stem auditory nuclei of the chicken: Ontogeny of nucleus magnocellularis and nucleus laminaris. J Comp Neurol 166:469–490.

    Article  Google Scholar 

  • Ryugo DK, Rouiller EM (1988) Central projections of intracellularly labeled auditory nerve fibers in cats: morphometric correlations with physiological properties. J Comp Neurol 271:130–142.

    Article  PubMed  CAS  Google Scholar 

  • Sachs MB, Sinnott JM (1978) Responses to tones of single cells in nucleus magnocellularis and nucleus angularis of the redwing blackbird (Agelaius phoeniceus). J Comp Physiol 126:347–361.

    Article  Google Scholar 

  • Sachs MB, Sinnott JM, Hienz RD (1978) Behavioral and physiological studies of hearing in birds. Fed Proc 37:2329–2335.

    PubMed  CAS  Google Scholar 

  • Schaller GB, Crawshaw PG (1982) Fishing behavior of Paraguayan caiman (Caiman crocodilus). Copeia 82:66–72.

    Article  Google Scholar 

  • Schermuly L, Klinke R (1990) Infrasound sensitive neurons in the pigeon cochlear ganglion. J Comp Physiol 166:355–363.

    Article  CAS  Google Scholar 

  • Scheich H (1990) Representational geometries of telencephalic auditory maps in birds and mammals. In: Finlay B, Innocenti G (eds) The Neocortex: Ontogeny and Phylogeny. Nato workshop, Plenum Press, (in press).

    Google Scholar 

  • Scheich H, Bonke BA, Bonke D, Langer G (1979a) Functional organization of some auditory nuclei in the guinea fowl demonstrated by the 2-deoxyglucose technique. Cell Tissue Res 204:17–27.

    Article  PubMed  CAS  Google Scholar 

  • Scheich H, Langer G, Bonke D (1979b) Responsiveness of units in the auditory neostriatum of the guinea fowl (Numida meleagris) to species specific calls and synthetic stimuli. II. Discrimination of iambus-like calls. J Comp Physiol 132:257–276.

    Article  Google Scholar 

  • Schermuly L, Klinke R (1990) Infrasound sensitive neurones in the pigeon cochlear ganglion. J Comp Physiol 166:355–363.

    Article  CAS  Google Scholar 

  • Sento S, Ryugo DK (1989) Endbulbs of Held and spherical bushy cells in cats: morphological correlates with physiological properties. J Comp Neurol 280: 553–562.

    Article  PubMed  CAS  Google Scholar 

  • Simpson HB, Vicario DS (1990) Brain pathways for learned and unlearned vocalizations differ in zebra finches. J Neurosci 10:1541–1556.

    PubMed  CAS  Google Scholar 

  • Smith CA, Konishi M, Schuff N (1985) Structure of the barn owl’s (Tyto alba) inner ear. Hearing Res 17:237–247.

    Article  CAS  Google Scholar 

  • Smith ZDJ, Rubel EW (1979) Organization and Development of brain stem auditory nuclei of the chicken: Dendritic gradients in nucleus laminaris. J Comp Neurol 186:213–239.

    Article  PubMed  CAS  Google Scholar 

  • Smolders JWT, Klinke R (1986) Synchronized responses of primary auditory fibre-populations in Caiman crocodilus (L.) to single tones and clicks. Hearing Res 24:89–103.

    Article  CAS  Google Scholar 

  • Spence CD, Pearson JD (1990) The computation of sound source elevation in the barn owl. In: Advances in neural information processing systems 2. IEEE Conference on neural information processing systems.

    Google Scholar 

  • Spzir MR, Sento S, Ryugo DK (1990) The central projections of the cochlear nerve fibers in the alligator lizard. J Comp Neurol 295:530–547.

    Article  Google Scholar 

  • Stotler WA (1953) An experimental study of the cells and connections of the superior olivary complex of the cat. J Comp Neurol 98:401–432.

    Article  PubMed  CAS  Google Scholar 

  • Sullivan WE (1985) Classification of response patterns in cochlear nucleus of barn owl: Correlation with functional response properties. J Neurophysiol 53:201–216.

    PubMed  CAS  Google Scholar 

  • Sullivan WE, Konishi M (1984) Segregation of stimulus phase and intensity coding in the cochlear nucleus of the barn owl. J Neurosci 4:1787–1799.

    PubMed  CAS  Google Scholar 

  • Sullivan WE, Konishi M (1986) Neural map of interaural phase difference in the owl’s brainstem. Proc Natl Acad Sei 83:8400–8404.

    Article  CAS  Google Scholar 

  • Takahashi T, Konishi M (1986) Selectivity for interaural time difference in the owl’s midbrain. J Neurosci 6:3413–3422.

    PubMed  CAS  Google Scholar 

  • Takahashi T, Moiseff A, Konishi M (1984) Time and intensity cues are processed independently in the auditory system of the owl. J Neurosci 4:1781–1786.

    PubMed  CAS  Google Scholar 

  • Takahashi T, Carr CE, Brecha N, Konishi M (1987) Calcium binding protein-like immunoreactivity labels the terminal field of nucleus laminaris of the barn owl. J Neurosci 7:1843–1856.

    PubMed  CAS  Google Scholar 

  • Takahashi T, Konishi M (1988a) Projections of nucleus angularis and nucleus laminaris to the lateral lemniscal nuclear complex of the barn owl. J Comp Neurol 274:212–238.

    Article  PubMed  CAS  Google Scholar 

  • Takahashi T, Konishi M (1988b) The projections of the cochlear nuclei and nucleus laminaris to the inferior colliculus of the barn owl. J Comp Neurology 274: 190–211.

    Article  CAS  Google Scholar 

  • Takahashi T, Konishi M (1988) Commissural projections mediate inhibition in a lateral lemniscal nucleus of the Barn Owl. Soc Neurosci Abstr 14:323.

    Google Scholar 

  • Takahashi T, Wagner H, Konishi M (1988) The role of commissural projections in the representation of bilateral space in the Barn Owl’s inferior colliculus. J Comp Neurol 281:545–554.

    Article  Google Scholar 

  • ten Donkelaar HJ, Bangma GC, Barbas-Henry HA, de Boer-van Huizen R, Wolters JG (1987) The brain stem in a lizard, Varanus exanthematicus. Adv Anat Embryol Cell Biol 103:56–60.

    Google Scholar 

  • Theurich M, Langer G, Scheich H (1984) Infrasound responses in the midbrain of the guinea fowl. Neurosci Lett 49:81–86.

    Article  PubMed  CAS  Google Scholar 

  • Ulinski PS, Margoliash D (1990) Neurobiology of the reptile-bird transition. In: Jones EG, Peters A (eds) Cerebral Cortex: Evolution and comparative anatomy of cerebral cortex. New York: Plenum Press (in press).

    Google Scholar 

  • Vicario DS, Nottebohm F (1987) Organization of the zebra finch song control system: I. Representation of syringeal muscles in the hypoglossal nucleus. J Comp Neurol 271:346–354.

    Article  Google Scholar 

  • Volman SF (1990) Neuroethological approaches to the evolution of neural systems. Brain Behav Evol 36:154–165.

    Article  PubMed  CAS  Google Scholar 

  • Volman SF, Konishi M (1989) Spatial selectivity and binaural responses in the inferior colliculus of the Great Horned Owl. J Neurosci 9:3083–3096.

    PubMed  CAS  Google Scholar 

  • Volman SF, Konishi M (1990) Comparative physiology of sound localization in four species of owls. Brain Behav Evol (in press).

    Google Scholar 

  • Wagner H, Takahashi T, Konishi M (1987) Representation of interaural time difference in the central nucleus of the barn owls’ inferior colliculus. J Neurosci 7: 3105–3116.

    PubMed  CAS  Google Scholar 

  • Warchol ME, Dallos P (1989) Neural response to very low-frequency sound in the avian cochlear nucleus. J Comp Physiol 166:83–95.

    Article  CAS  Google Scholar 

  • Warchol ME, Dallos P (1990) Neural coding in the chick cochlear nucleus. J Comp Physiol 166:721–734.

    Article  CAS  Google Scholar 

  • Warr WB (1966) Fiber degeneration following lesions in the anterior ventral cochlear nucleus of the cat. Exp Neurol 14:453–474.

    Article  PubMed  CAS  Google Scholar 

  • Weiss TF, Rose C (1988) A comparison of synchronization filters in different auditory receptor organs. Hearing Res 33:175–180.

    Article  CAS  Google Scholar 

  • Weiss TF, Mulroy MJ, Turner RG, Pike CL (1976) Tuning of single fibers in the cochlear nerve of the alligator lizard: Relation to receptor organ morphology. Brain Res 115:71–90.

    Article  PubMed  CAS  Google Scholar 

  • Wever EG (1978) The Reptile Ear. Princeton, New Jersey: Princeton University Press.

    Google Scholar 

  • Wever EG, Vernon JA (1957) Auditory responses in the spectacled caiman. J Cell Comp Physiol 50:333–339.

    Article  CAS  Google Scholar 

  • Wilczynski W (1984) Central neural systems subserving a homoplasous periphery. Am Zoologist 24:755–763.

    Google Scholar 

  • Wild JM (1987) Nuclei of the lateral lemniscus project directly to the thalamic auditory nuclei in the pigeon. Brain Res 408:303–307.

    Article  PubMed  CAS  Google Scholar 

  • Winter P, Schwartzkopff J (1961) Form und zellzahl der akustischen nervenzentren in der medulla oblongata von eulen (Striges). Experientia 17:515–516.

    Article  PubMed  CAS  Google Scholar 

  • Wise LZ, Frost BJ, Shaver SW (1991) The representation of sound location and frequency in the midbrain of the saw-whet owl (Aegolius acadicus). J Comp Physiol (submitted).

    Google Scholar 

  • Woolf NK, Sachs MB (1977) Phase-locking to tones in avian auditory nerve fibers. J Acoust Soc Am 62:46.

    Article  Google Scholar 

  • Yin TCT, Chan JCK (1990) Interaural time sensitivity in the medial superior olive of the cat. J Neurophysiol 64:465–488.

    PubMed  CAS  Google Scholar 

  • Young SR, Rubel EW (1983) Frequency-specific projections of individual neurons in chick brainstem auditory nuclei. J Neurosci 7:1373–1378.

    Google Scholar 

  • Young SR, Rubel EW (1986) Embryogenesis of arboration pattern and topography of individual axons in n. laminaris of the chicken brain stem. J Comp Neurol 254:425–459.

    Article  PubMed  CAS  Google Scholar 

  • Zaretsky MD, Konishi M (1976) Tonotopic organization in the avian telencephalon. Brain Res 111: 167–171.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Carr, C.E. (1992). Evolution of the Central Auditory System in Reptiles and Birds. In: Webster, D.B., Popper, A.N., Fay, R.R. (eds) The Evolutionary Biology of Hearing. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-2784-7_32

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2784-7_32

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7668-5

  • Online ISBN: 978-1-4612-2784-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics