Skip to main content

Time Analysis

  • Chapter
Human Psychophysics

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 3))

Abstract

In audition, perhaps more than in any other sense, the temporal aspects of the stimulus are crucially important for conveying information. This clearly is true of speech and of most auditory communication signals, where the temporal pattern of spectral changes is, essentially, the informational substrate. Indeed, an auditory “pattern” is seldom a fixed spectral shape; rather, it is a time varying sequence of spectral shapes. Given the fundamental importance of temporal changes in audition, it is not surprising that most auditory systems are “fast,” at least compared to other sensory systems. We can hear temporal changes in the low millisecond range. We can, for example, hear the roughness produced by periodically interrupting a broadband noise at interruption rates up to several kHz. This is several orders of magnitude faster than in vision where the analogous “flicker fusion frequency” is a sluggish 50 to 60 Hz.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bacon SP (1990) Effect of masker level on overshoot. J Acoust Soc Am 88:698–702.

    PubMed  CAS  Google Scholar 

  • Bacon SP, Grantham DW (1989) Modulation masking: Effects of modulation frequency, depth, and phase. J Acoust Soc Am 85:2575–2580.

    PubMed  CAS  Google Scholar 

  • Bacon SP, Viemeister NF (1985) Temporal modulation transfer functions in normal-hearing and hearing-impaired listeners. Audiology 24:117–134.

    PubMed  CAS  Google Scholar 

  • Bilger RC (1959) Additivity of different types of masking. J Acoust Soc Am 31:1107–1109.

    Google Scholar 

  • Burns EM, Viemeister NF (1981) Played-again SAM: Further observations on the pitch of amplitude-modulated noise. J Acoust Soc Am 70:1655–1660.

    Google Scholar 

  • Buunen TJF, van Valkenburg DA (1979) Auditory detection of a single gap in noise. J Acoust Soc Am 65:534–537.

    PubMed  CAS  Google Scholar 

  • Buus S, Florentine M (1985) Gap detection in normal and impaired listeners: The effect of level and frequency. In: Michelson A (ed) Time Resolution in Auditory Systems. Berlin, Heidelberg: Springer-Verlag, pp. 159–179.

    Google Scholar 

  • Carlyon RP (1987) A release from masking by continuous, random, notched noise. J Acoust Soc Am 81:418–426.

    PubMed  CAS  Google Scholar 

  • Carlyon RP, White LJ (1992) Effect of signal frequency and masker level on the frequency regions responsible for the overshoot effect. J Acoust Soc Am 91:1034–1041.

    PubMed  CAS  Google Scholar 

  • Champlin CA, McFadden D (1989) Reductions in overshoot following intense sound exposures J Acoust Soc Am 85:2005–2011.

    PubMed  CAS  Google Scholar 

  • de Boer E (1985) Auditory time constants: A paradox? In: Michelson A (ed) Time Resolution in Auditory Systems. Berlin, Heidelberg: Springer-Verlag, pp. 141–158.

    Google Scholar 

  • Duifhuis H (1973) Consequences of peripheral frequency selectivity for nonsimultaneous masking. J Acoust Soc Am 54:1471–1488.

    PubMed  CAS  Google Scholar 

  • Eddins DA (1993) Amplitude modulation detection of narrowband noise: Effects of absolute bandwidth and frequency region. J Acoust Soc Am, 93:470–479.

    Google Scholar 

  • Elliott LL (1967) Development of auditory narrowband frequency contours. J Acoust Soc Am 42:143–153.

    PubMed  CAS  Google Scholar 

  • Elliott LL (1969) Masking of tones before, during, and after brief silent periods in noise. J. Acoust Soc Am 45:1277–1279.

    PubMed  CAS  Google Scholar 

  • Festen JM (1987) Speech-reception threshold in a fluctuating background sound and its possible relation to temporal auditory resolution. In: Schouten MEH (ed) The Psychophysics of Speech Perception. Dordrecht, The Netherlands: Nijhoff, pp. 461–466.

    Google Scholar 

  • Festen JM, Plomp R (1981) Relations between auditory functions in normal hearing. J Acoust Soc Am 70:356–369.

    PubMed  CAS  Google Scholar 

  • Festen JM, Plomp R (1983) Relations between auditory functions in impaired hearing. J Acoust Soc Am 73:652–662.

    PubMed  CAS  Google Scholar 

  • Festen JM, Houtgast T, Plomp R, Smoorenburg GF (1977) Relations between inter-individual differences of auditory functions. In: Evan EF, Wilson JP (eds) Psychophysics and Physiology of Hearing. London: Academic Press, pp. 311–319.

    Google Scholar 

  • de Filippo CL, Snell KB (1986) Detection of a temporal gap in low-frequency narrowband signals by normally hearing and hearing-impaired subjects. J Acoust Soc Am 80:1354–1358.

    Google Scholar 

  • Fitzgibbons PJ (1983) Temporal gap detection in noise as a function of frequency, bandwidth, and level. J Acoust Soc Am 74:373–379.

    Google Scholar 

  • Fitzgibbons PJ, Wightman FL (1982) Gap detection in normal and hearing-impaired listeners. J Acoust Soc Am 72:761–765.

    PubMed  CAS  Google Scholar 

  • Fletcher H (1940) Auditory patterns. Rev Mod Phys 12:47–65.

    Google Scholar 

  • Florentine M (1986) Level discrimination of tones as a function of duration. J Acoust Soc Am 79:792–798.

    PubMed  CAS  Google Scholar 

  • Florentine M, Buus S (1984) Temporal gap detection in sensorineural and simulated hearing impairment. J Speech Hear Res 27:449–455.

    PubMed  CAS  Google Scholar 

  • Formby C, Forrest TG (1991) Detection of silent temporal gaps in sinusoidal markers. J Acoust Soc Am 89:830–837.

    PubMed  CAS  Google Scholar 

  • Forrest TG, Green DM (1987) Detection of partially filled gaps in noise and the temporal modulation transfer function. J Acoust Soc Am 82:1933–1943.

    PubMed  CAS  Google Scholar 

  • Garner WR (1947) The effect of frequency spectrum on temporal integration of energy in the ear. J Acoust Soc Am 19:808–815.

    Google Scholar 

  • Gerken GM, Bhat VKH, Hutchison-Clutter MH (1990) Auditory temporal integration and the power-function model. J Acoust Soc Am 88:767–778.

    PubMed  CAS  Google Scholar 

  • Glasberg BR, Moore BCJ (1986) Auditory filter shapes in subjects with unilateral and bilateral cochlear impairments. J Acoust Soc Am 79:1020–1033.

    PubMed  CAS  Google Scholar 

  • Glasberg BR, Moore BCJ (1989) Psychoacoustical abilities of subjects with unilateral and bilateral cochlear hearing impairments and their relationship to the ability to understand speech. Scand Audiol Suppl 32:1–25.

    PubMed  CAS  Google Scholar 

  • Glasberg BR, Moore BCJ, Bacon SP (1987) Gap detection and masking in hearing-impaired and normally hearing subjects. J Acoust Soc Am 81:1546–1556.

    PubMed  CAS  Google Scholar 

  • Goldstein JL (1966) An investigation of monaural phase perception. Doctoral Dissertation, The University of Rochester, Rochester, NY. Ann Arbor, MI: University Microfilms, Publ. No. 66–6852.

    Google Scholar 

  • Goldstein JL, Srulovic P (1977) Auditory nerve spike intervals as an adequate basis for aural frequency measurement. In: Evans EF, Wilson JP (eds) Psychophysics and Physiology of Hearing. London; Academic Press, pp. 337–346.

    Google Scholar 

  • Green DM (1969) Masking with continuous and pulsed sinusoids. J Acoust Soc Am 46:939–946.

    PubMed  CAS  Google Scholar 

  • Green DM (1973) Temporal acuity as a function of frequency. J Acoust Soc Am 54:373–379.

    PubMed  CAS  Google Scholar 

  • Green DM (1985) Temporal factors in psychoacoustics In: Michelson A (ed) Time Resolution in Auditory Systems. Berlin, Heidelberg: Springer-Verlag, pp. 122–140.

    Google Scholar 

  • Green DM, Swets JA (1966) Signal Detection Theory and Psychophysics. New York: John Wiley and Sons.

    Google Scholar 

  • Green DM, Birdsall TG, Tanner WP Jr (1957) Signal detection as a function of signal intensity and duration. J Acoust Soc Am 29:523–531.

    Google Scholar 

  • Green DM, Richards VM, Onsan ZA (1990) Sensitivity to envelope coherence. J Acoust Soc Am 87:323–329.

    PubMed  CAS  Google Scholar 

  • Green GG, Kay, RH (1973) The adequate stimuli for channels in the human auditory pathways concerned with the modulation present in frequency-modulated tones. J Physiol (London) 234:50–52.

    Google Scholar 

  • Green GG, Kay RH (1974) Channels in the human auditory system concerned with the waveform of modulation present in amplitude- and frequency-modulated tones. J Physiol (London) 241:29–30.

    Google Scholar 

  • Hanna TE, von Gierke SM, Green DM (1986) Detection and intensity discrimination of a sinusoid. J Acoust Soc Am 80:1335–1340.

    PubMed  CAS  Google Scholar 

  • Henning GB, Gaskell H (1981) Monaural phase sensitivity measured with Ronken’s paradigm. J Acoust Soc Am 70:1669–1673.

    Google Scholar 

  • Houtgast T (1989) Frequency selectivity in amplitude modulation detection. J Acoust Soc Am 85:1676–1680.

    PubMed  CAS  Google Scholar 

  • Huffman DA (1962) The generation of impulse-equivalent pulse trains. IRE Transactions IT 8: S10-S16.

    Google Scholar 

  • Irwin RJ, Purdy SC (1982) The minimum detectable duration of auditory signals for normal and hearing-impaired listeners. J Acoust Soc Am 71:967–974.

    PubMed  CAS  Google Scholar 

  • Jeffress LA (1967) Stimulus-oriented approach to detection re-examined. J Acoust Soc Am 41:480–488.

    PubMed  CAS  Google Scholar 

  • Jeffress LA (1968) Mathematical and electrical models of auditory detection. J Acoust Soc Am 44:187–203.

    PubMed  CAS  Google Scholar 

  • Jesteadt W, Bacon SP, Lehman JR (1982) Forward masking as a function of frequency, masker level, and signal delay. J Acoust Soc Am 71:950–962.

    PubMed  CAS  Google Scholar 

  • Kiang NY-S, Watanabe T, Thomas EC, Clark LF (1965) Discharge Patterns of Single Fibers in the Cat’s Auditory Nerve. Research Monograph No. 35. Cambridge, MA: MIT Press.

    Google Scholar 

  • Kidd G, Jr, Feth LL (1982) Effects of masker duration in pure-tone forward masking. J Acoust Soc Am 72:1384–1386.

    PubMed  Google Scholar 

  • Leshowitz B (1971) The measurement of the two-click threshold. J Acoust Soc Am 49:462–466.

    PubMed  Google Scholar 

  • Massaro DW (1975) Backward recognition masking. J Acoust Soc Am 58:1059–1065.

    PubMed  CAS  Google Scholar 

  • McFadden D (1989) Spectral differences in the ability of temporal gaps in noise to reset the mechanisms underlying overshoot. J Acoust Soc Am 85:254–261.

    PubMed  CAS  Google Scholar 

  • Moody DB, Cole D, Davidson LM, Stebbins WC (1984) Evidence for a reappraisal of the psychophysical selective adaptation paradigm. J Acoust Soc Am 76:1076–1079.

    PubMed  CAS  Google Scholar 

  • Moore BCJ (1973) Frequency difference limens for short-duration tones. J Acoust Soc Am 54:610–619.

    PubMed  CAS  Google Scholar 

  • Moore BCJ, Glasberg BR (1988) Gap detection with sinusoids and noise in normal, impaired, and electrically stimulated ears. J Acoust Soc Am 83:1093–1101.

    PubMed  CAS  Google Scholar 

  • Moore BCJ, Glasberg BR, Plack CJ, Biswas AK (1988) The shape of the ear’s temporal window. J Acoust Soc Am 83:1102–1116.

    PubMed  CAS  Google Scholar 

  • Moore BCJ, Glasberg BR, Donaldson E, McPherson T, Plack CJ (1989) Detection of temporal gaps in sinusoids by normally hearing and hearing-impaired subjects. J Acoust Soc Am 85:1266–1275.

    PubMed  CAS  Google Scholar 

  • Panter PF (1965) Modulation, Noise and Spectral Analysis. New York: McGraw-Hill.

    Google Scholar 

  • Patterson RD (1976) Auditory filter shapes derived with noise stimuli. J Acoust Soc Am 59:640–654.

    PubMed  CAS  Google Scholar 

  • Penner MJ (1977) Detection of temporal gaps in noise as a measure of the decay of auditory sensation. J Acoust Soc Am 61:552–557.

    PubMed  CAS  Google Scholar 

  • Penner MJ (1978) A power law transformation resulting in a class of short-term integrators that produce time-intensity trades for noise bursts. J Acoust Soc Am 63:195–201.

    PubMed  CAS  Google Scholar 

  • Penner MJ (1980) The coding of intensity and the interaction of forward and backward masking. J Acoust Soc Am 67:608–616.

    PubMed  CAS  Google Scholar 

  • Penner MJ, Cudahy E (1973) Critical masking interval: A temporal analog of the critical band. J Acoust Soc Am 54:1530–1534.

    PubMed  CAS  Google Scholar 

  • Penner MJ, Shiffrin RM (1980) Nonlinearities in the coding of intensity within the context of a temporal summation model. J Acoust Soc Am 67:617–627.

    PubMed  CAS  Google Scholar 

  • Penner MJ, Robinson CE, Green DM (1972) The critical masking interval. J Acoust Soc Am 52:1661–1668.

    PubMed  CAS  Google Scholar 

  • Pierce JR, Lipes R, Cheetham C (1977) Uncertainty concerning the direct use of time information in hearing: Place clues in white-spectra stimuli. J Acoust Soc Am 61:1609–1621.

    PubMed  CAS  Google Scholar 

  • Pisoni DB (1977) Identification and discrimination of the relative onset time of two component tones: Implications for voicing perception in stops. J Acoust Soc Am 61:1352–1361.

    PubMed  CAS  Google Scholar 

  • Plack CJ, Moore BCJ (1990) Temporal window shape as a function of frequency and level. J Acoust Soc Am 87:2178–2187.

    PubMed  CAS  Google Scholar 

  • Plack CJ, Moore BCJ (1991) Decrement detection in normal and impaired ears. J Acoust Soc Am 90:3069–3076.

    PubMed  CAS  Google Scholar 

  • Plomp R (1964) The rate of decay of auditory sensation. J Acoust Soc Am 36:277–282.

    Google Scholar 

  • Plomp R, Bouman MA (1959) Relation between hearing threshold and duration for tone pulses. J Acoust Soc Am 31:749–758.

    Google Scholar 

  • Rees A, Møller A (1983) Responses of neurons in the inferior colliculus of the rat to AM and FM tones. Hear Res 10:301–330.

    PubMed  CAS  Google Scholar 

  • Relkin EM, Turner CW (1988) A reexamination of forward masking in the auditory nerve. J Acoust Soc Am 84:584–591.

    PubMed  CAS  Google Scholar 

  • Riesz RR (1928) Differential intensity sensitivity of the ear for pure tones. Phys Rev 31:867–875.

    Google Scholar 

  • Rice SO (1982) Envelopes of narrow band signals. Proc IEEE 70:692–699.

    Google Scholar 

  • Robinson CE, Pollack I (1973) Interaction between forward and backward masking: A measure of the integrating period of the auditory system. J Acoust Soc Am 53:1313–1316.

    PubMed  CAS  Google Scholar 

  • Rodenburg M (1977) Investigation of temporal effects with amplitude modulated signals. In: Evans EF, Wilson JP (eds) Psychophysics and Physiology of Hearing. London: Academic Press, pp. 429–437.

    Google Scholar 

  • Ronken D (1970) Monaural detection of a phase difference between clicks. J Acoust Soc Am 47:1091–1099.

    PubMed  CAS  Google Scholar 

  • Scharf B (1978) Loudness. In: Carterette EC, Friedman MP (eds) Handbook of Perception, Volume IV. New York: Academic Press, pp. 187–242.

    Google Scholar 

  • Schreiner CE, Urbas JV (1988) Representation of amplitude modulation in the auditory cortex of the cat. II. Comparison between cortical fields. Hear Res 32:49–65.

    PubMed  CAS  Google Scholar 

  • Shailer MJ, Moore BCJ (1983) Gap detection as a function of frequency, bandwidth, and level. J Acoust Soc Am 74:467–473.

    PubMed  CAS  Google Scholar 

  • Shailer MJ, Moore BCJ (1985) Detection of temporal gaps in bandlimited noise: Effects of variations in bandwidth and signal-to-masker ratio. J Acoust Soc Am 77:635–639.

    PubMed  CAS  Google Scholar 

  • Shailer MJ, Moore BCJ (1987) Gap detection and the auditory filter: Phase effects using sinusoidal stimuli. J Acoust Soc Am 81:1110–1117.

    PubMed  CAS  Google Scholar 

  • Shannon RV (1992) Temporal modulation transfer functions in patients with cochlear implants. J Acoust Soc Am 91:2156–2164.

    PubMed  CAS  Google Scholar 

  • Sheeley EC, Bilger RC (1964) Temporal integration as a function of frequency. J Acoust Soc Am 36:1850–1857.

    Google Scholar 

  • Sheft S, Yost WA (1990) Temporal integration in amplitude modulation detection. J Acoust Soc Am 88:796–805.

    PubMed  CAS  Google Scholar 

  • Small AM, Boggess J, Klich R, Kuehn D, Thelin J, Wiley T (1972) MLD’s in forward and backward masking. J Acoust Soc Am 51:1365–1367.

    PubMed  CAS  Google Scholar 

  • Smiarowski RA, Carhart R (1975) Relations between temporal resolution, forward masking, and simultaneous masking. J Acoust Soc Am 57:1169–1174.

    PubMed  CAS  Google Scholar 

  • Smith RL (1977) Short-term adaptation in auditory nerve fibers: Some poststimulatory effects. J Neurophysiol 40:1098–1112.

    PubMed  CAS  Google Scholar 

  • Smith RL (1979) Adaptation, saturation, and physiological masking in single auditory-nerve fibers. J Acoust Soc Am 65:166–178.

    PubMed  CAS  Google Scholar 

  • Smith RL, Zwislocki JJ (1971) Responses of some neurons in the cochlear nucleus to tone-intensity increments. J Acoust Soc Am 50:1520–1525.

    PubMed  CAS  Google Scholar 

  • Smith RL, Zwislocki JJ (1975) Short-term adaptation and incremental responses in single auditory-nerve fibers. Biol Cybernet 17:169–182.

    CAS  Google Scholar 

  • Smith RL, Brachman ML, Goodman DA (1983) Adaptation in the auditory periphery. Ann NY Acad Sci 405:79–93.

    PubMed  CAS  Google Scholar 

  • Strickland EA, Viemeister NF, Fantini DA, Garrison MA (1989) Within- versus cross-channel mechanisms in detection of envelope phase disparity. J Acoust Soc Am 86:2160–2166.

    PubMed  CAS  Google Scholar 

  • Summerfield Q, Haggard M, Foster J, Gray S (1984) Perceiving vowels from uniform spectra: Phonetic exploration of an auditory aftereffect. Percept Psychophys 35: 203–213.

    PubMed  CAS  Google Scholar 

  • Tansley BW, Suffield JB (1983) Time course of adaptation and recovery of channels selectively sensitive to frequency and amplitude modulation. J Acoust Soc. Am 74:765–775.

    PubMed  CAS  Google Scholar 

  • Tyler RS, Summerfield Q, Wood EJ, Fernandes MA (1982) Psychoacoustic and phonetic temporal processing in normal and hearing impaired listeners. J Acoust Soc Am 72:740–752.

    PubMed  CAS  Google Scholar 

  • van Zanten GA (1980) Temporal modulation transfer functions for intensity modulated noise. In: van den Brink G, Bilsen FA (eds) Psychophysical and Behavioral Studies in Hearing. Delft, The Netherlands: Delft University Press, pp. 206–209.

    Google Scholar 

  • Viemeister NF (1970) Auditory discrimination of intensity, internal noise, and temporal processing. PhD Dissertation, Indiana University, Bloomington, IN.

    Google Scholar 

  • Viemeister NF (1977) Temporal factors in audition: A systems analysis approach. In: Evans EF, Wilson JP (eds) Psychophysics and Physiology of Hearing. London: Academic Press, pp. 419–427.

    Google Scholar 

  • Viemeister NF (1979) Temporal modulation transfer functions based upon modulation thresholds. J Acoust Soc Am 66:1364–1380.

    PubMed  CAS  Google Scholar 

  • Viemeister NF (1980) Adaptation of masking. In: van den Brink G, Bilson FA (eds) Psychological, Physiological and Behavioural Studies in Hearing. Delft, The Netherlands: Delft University Press, pp. 190–198.

    Google Scholar 

  • Viemeister NF (1988) Psychophysical aspects of auditory intensity coding. In: Edelman GM, Gall WE, Cowan WM (eds) Auditory Function: Neurobiological Bases of Hearing. New York: John Wiley and Sons, pp. 213–241.

    Google Scholar 

  • Viemeister NF, Bacon SP (1988) Intensity discrimination, increment detection, and magnitude estimation for 1-kHz tones. J Acoust Soc Am 84:172–178.

    PubMed  CAS  Google Scholar 

  • Viemeister NF, Wakefield GH (1991) Temporal integration and multiple looks. J Acoust Soc Am 90:858–865.

    PubMed  CAS  Google Scholar 

  • Wakefield GH, Viemeister NF (1984) Selective adaptation of linear frequency-modulated sweeps: Evidence for direction-specific FM channels? J Acoust Soc Am 75:1588–1592.

    PubMed  CAS  Google Scholar 

  • Wakefield GH, Viemeister NF (1985) Temporal interactions between pure tones and amplitude-modulated noise. J Acoust Soc Am 77:1535–1542.

    PubMed  CAS  Google Scholar 

  • Wakefield GH, Viemeister NF (1990) Discrimination of modulation depth of SAM noise. J Acoust Soc Am 88:1367–1373.

    PubMed  CAS  Google Scholar 

  • Wier CC, Green DM, Hafter ER, Burkhardt S (1977) Detection of a tone burst in continuous- and gated-noise maskers: Effects of signal frequency, duration, and masker level. J Acoust Soc Am 61:1298–1300.

    PubMed  CAS  Google Scholar 

  • Williams KN, Perrott DR (1972) Temporal resolution of tonal pulses. J Acoust Soc Am 51:644–647.

    Google Scholar 

  • Yost WA, Sheft S (1989) Across critical band processing of amplitude modulated tones. J Acoust Soc Am 85:848–857.

    PubMed  CAS  Google Scholar 

  • Yost WA, Sheft S (1990) A comparison among three measures of cross-spectral processing of amplitude modulation with tonal signals. J Acoust Soc Am 87:897–900.

    PubMed  CAS  Google Scholar 

  • Yost WA, Walton J (1977) Hierarchy of masking-level differences obtained for temporal masking. J Acoust Soc Am 61:1376–1379.

    PubMed  CAS  Google Scholar 

  • Yost WA, Sheft S, Opie J (1989) Modulation interference in detection and discrimination of amplitude modulation. J Acoust Soc Am 86:2138–2147.

    PubMed  CAS  Google Scholar 

  • Zwicker E (1965a) Temporal effects in simultaneous masking by white noise bursts. J Acoust Soc Am 37:653–663.

    Google Scholar 

  • Zwicker E (1965b) Temporal effects in simultaneous masking and loudness. J Acoust Soc Am 38:132–141.

    PubMed  CAS  Google Scholar 

  • Zwicker E (1976) Psychoacoustic equivalent of period histograms. J Acoust Soc Am 59:166–175.

    PubMed  CAS  Google Scholar 

  • Zwislocki JJ (1960) Theory of temporal auditory summation. J Acoust Soc Am 32:1046–1060.

    Google Scholar 

  • Zwislocki JJ (1969) Temporal summation of loudness: An analysis. J Acoust Soc Am 46:431–441.

    PubMed  CAS  Google Scholar 

  • Zwislocki JJ, Hellman RP, Vernilo RT (1962) Threshold of audibility for short pulses J Acoust Soc Am 34:1648–1652.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Viemeister, N.F., Plack, C.J. (1993). Time Analysis. In: Yost, W.A., Popper, A.N., Fay, R.R. (eds) Human Psychophysics. Springer Handbook of Auditory Research, vol 3. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-2728-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2728-1_4

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7644-9

  • Online ISBN: 978-1-4612-2728-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics