Skip to main content

Global Terrestrial Gross and Net Primary Productivity from the Earth Observing System

  • Chapter
Methods in Ecosystem Science

Abstract

Probably the single most fundamental measure of “global change” of highest practical interest to humankind is the change in terrestrial biological productivity. Biological productivity is the source of all the food, fiber, and fuel by which humans survive, and so defines most fundamentally the habitability of Earth. The spatial variability of net primary productivity (NPP) over the globe is enormous, from about 1000 g Cm-2 for evergreen tropical rain forests to less than 30 g Cm-2 for deserts (Scurlock et al. 1999). With increased atmospheric carbon dioxide (CO2) and global climate change, NPP over large areas may be changing (Myneni et al. 1997a, VEMAP 1995, Melillo et al. 1993). Understanding regional variability in carbon cycle processes requires a more spatially detailed analysis of global land surface processes. Since December 1999, the U.S. National Aeronautics and Space Administration (NASA) Earth Observing System (EOS) produces a regular global estimate of (gross primary productivity, GPP) and annual NPP of the entire terrestrial earth surface at 1-km spatial resolution, 150 million cells, each having GPP and NPP computed individually.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Asrar, G.; Myneni, R.; Choudhury, B.J. Spatial heterogeneity in vegetation canopies and remote sensing of absorbed photosynthetically active radiation: A modeling study. Remote Sens. Environ. 41:85–103; 1992.

    Article  Google Scholar 

  • Baldocchi, D.; Valentini, R.; Running, S.W.; Oechel, W.; Dahlman, R. Strategies for measuring and modelling carbon dioxide and water vapor fluxes over terrestrial ecosystems. Global Change Biol. 2:159–168; 1996.

    Article  Google Scholar 

  • Bondeau, A.; Kicklighter, J.; Kaduk, J.; and participants of the Potsdam NPP Model Intercomparison. Comparing global models of terrestrial net primary productivity (NPP): Importance of vegetation structure on seasonal NPP estimates. Global Change Biology 5:35–45; 1999.

    Article  Google Scholar 

  • Cannell, M.G.R. World Forest Biomass and Primary Production Data. London: Academic; 1982.

    Google Scholar 

  • Churkina, G.; Running, S.W. Contrasting climatic controls on the estimated productivity of different biomes. Ecosystems 1:206–215; 1998.

    Article  Google Scholar 

  • Churkina, G.; Running, S.W.; Schloss, A.L.; PIK-NPP Participants. Comparing global models of terrestrial net primary productivity (NPP): The importance of water availability. Global Change Biol. 5:46–55; 1999.

    Article  Google Scholar 

  • Ciais, P., Tans, P.P., Trolier, M., White, J.W.C., and Francey, R.J. A large northern hemisphere terrestrial CO2 sink indicated by 13C/12C of atmospheric CO2. Science 269:1098–1102; 1995.

    Article  PubMed  CAS  Google Scholar 

  • Cramer, W.; Field, C.B. Comparing global models of terrestrial net primary productivity (NPP): Introduction. Global Change Biol. 5:iii–iv; 1999.

    Article  Google Scholar 

  • DeFries, R.S.; Townshend, J.R.G.; Hansen, M.C. Continuous fields of vegetation characteristics at the global scale at 1 km resolution. J. Geophys. Res. Atmos. 104(D14):16911–16924; 1999.

    Article  Google Scholar 

  • Field, C.B.; Behrenfeld, M.J.; Randerson, J.T.; Falkowski, P. Primary production of the biosphere: Integrating terrestrial and oceanic components. Science 281:237–240; 1998.

    Article  PubMed  CAS  Google Scholar 

  • Field, C.B.; Randerson, J.T.; Malmstrom, C.M. Global net primary production: Combining ecology and remote sensing. Remote Sens. Environ. 51:74–88; 1995.

    Article  Google Scholar 

  • Goulden, M.L., Munger, J.W., Fan, S-M., Daube, B.C., and Wofsy, S.C. Exchange of carbon dioxide by a deciduous forest: Response to interannual climate variability. Science 271:1576–1578; 1996.

    Article  CAS  Google Scholar 

  • DeFries, R.S.; Hansen, M.C.; Townshend, J.R.G.; Sohlberg, R. Global land cover classification at 8 km spatial resolution: the use of training data derived from Landsat imagery in decision tree classifiers. Internat. J. Remote Sens. 19(16):3141–3168.

    Google Scholar 

  • Hudson, R.J.M.; Gherini, S.A.; Goldstein, R.A. Modeling the global carbon cycle: Nitrogen fertilization of the terrestrial biosphere and the “missing” CO2 sink. Global Biogeochem. Cycl. 8(3):307–333; 1994.

    Article  CAS  Google Scholar 

  • Hunt, E.R., Jr. Relationship between woody biomass and PAR conversion efficiency for estimating net primary production from NDVI. Internat. J. Remote Sens. 15:1725–1730; 1994.

    Article  Google Scholar 

  • Hunt, E.R., Jr., Piper, S.C.; Nemani, R.R.; Keeling, C.D.; Otto, R.D.; Running, S.W. Global net carbon exchange and intra-annual atmospheric CO2 concentrations predicted by an ecosystem process model and three-dimensional atmospheric transport model. Global Biogeochem. Cycl. 10:431–456; 1996.

    Article  CAS  Google Scholar 

  • Justice, C.O.; Running, S.W.; et al. The Moderate Resolution Imaging Spectroradiometer (MODIS): Land remote sensing for global change research. IEEE Trans. Geosci. Remote Sens. 36(4): 1228–1249; 1998.

    Article  Google Scholar 

  • Keeling, C.D.; Chin, J.F.S.; Whorf, T.P. Increased activity of northern vegetation inferred from atmospheric CO2 measurements. Nature 382:146–149; 1996.

    Article  CAS  Google Scholar 

  • Kicklighter, D.W.; Bondeau, A.; Schloss, A.L.; Kaduk, J.; McGuire, A.D.; and participants of the Potsdam NPP Model Intercomparison. Comparing global models of terrestrial net primary productivity (NPP): Global pattern and differentiation by major bidmes. Global Change Biol. 5:16–24; 1999.

    Article  Google Scholar 

  • Kimball, J.; Running, S.W.; Nemani, R.R. An improved method for estimating surface humidity from daily minimum temperature. Agric. For. Meteorol. 85:87–98; 1997a.

    Article  Google Scholar 

  • Kimball, J.S.; Thornton, P.E.; White, M.A.; Running, S.W. Simulating forest productivity and surface-atmosphere carbon exchange in the BOREAS study region. Tree Physiol. 17:589–599; 1997b.

    Article  PubMed  CAS  Google Scholar 

  • Kimball, J.S.; White, M.A.; Running, S.W. BIOME-BGC simulations of stand hydrologic processes for BOREAS. J. Geophys. Res. 102(D24):29043–29051: 1997c.

    Article  CAS  Google Scholar 

  • Landsberg, J.J.; Prince, S.D.; Jarvis, P.G.; McMurtrie, R.E.; Luxmoore, R.; Medlyn, B.E. Energy conversion and use in forests: The analysis of forest production in terms of radiation utilization efficiency. In: Gholz, H.L.; Nakane, K., eds. The Use of Remote Sensing in the Modeling of Forest Productivity at Scales from the Stand to the Globe. London: Kluwer; 1996.

    Google Scholar 

  • Larcher, W. Physiological Plant Ecology. Springer-Verlag, Berlin; 1995.

    Book  Google Scholar 

  • Maier, C.A.; Zarnoch, S.J.; Dougherty, P.M. Effects of temperature and tissue nitrogen on dormant season stem and branch maintenance respiration in a young loblolly pine (Pinus taeda) plantation. Tree Physiol. 18:11–20; 1998.

    Article  PubMed  Google Scholar 

  • Melillo, J.M.; McGuire, A.D.; Kicklighter, D.W.; Moore, B., III; Vorosmarty, C.J.; Schloss, A.L. Global climate change and terrestrial net primary production. Nature 363:234–240; 1993.

    Article  CAS  Google Scholar 

  • Monteith, J.L. Solar radiation and productivity in tropical ecosystems. J. Appl. Ecol. 9:747–766; 1972.

    Article  Google Scholar 

  • Monteith, J.L. Climate and the efficiency of crop production in Britain. Philosoph. Trans. R Soc. Lond. 281:277–294; 1977.

    Article  Google Scholar 

  • Myneni, R.B.; Keeling, C.D.; Tucker, C.J.; Asrar, G.; Nemani, R.R. Increased plant growth in the northern high latitudes between 1981–1991. Nature 386:698–702; 1997a.

    Article  CAS  Google Scholar 

  • Myneni, R.B.; Nemani, R.R.; Running, S.W. Estimation of global LAI and FPAR from radiative transfer models. IEEE Trans. Geosci. Remote Sens. 35:1380–1393; 1997b.

    Article  Google Scholar 

  • Nemani, R.R.; Running, S.W. Testing a theoretical climate-soil-leaf area hydrologic equilibrium of forests using satellite data and ecosystem simulation. Agric. For. Meteorol. 44:245–260; 1989.

    Article  Google Scholar 

  • Nemani, R.R.; Running, S.W. Implementation of a hierarchical global vegetation classification in ecosystem function models. J. Vegetat. Sci. 7:337–346; 1996.

    Article  Google Scholar 

  • Nemani, R.R.; Running, S.W. Land cover characterization using multi-temporal red, NIR and thermal-IR AVHRR data. Ecol. Applic. 7:79–90; 1997.

    Article  Google Scholar 

  • Nemery, B.; Francois, L.; Gerard, J.C.; Bondeau, A.; Heimann, H.; and participants of the Potsdam NPP Model Intercomparison. Comparing global models of terrestrial net primary productivity (NPP): Analysis of the seasonal atmospheric CO2 signal. Global Change Biol. 5:65–76; 1999.

    Article  Google Scholar 

  • Piper, S.C.; Stewart, E.F. A gridded global data set of daily temperature and precipitation for terrestrial biospheric modeling. Global Biogeochem. Cycl. 10:757–782; 1996.

    Article  Google Scholar 

  • Prince, S.D. A model of regional primary production for use with coarse resolution satellite data. Internat. J. Remote Sens. 12:1313–1330; 1991.

    Article  Google Scholar 

  • Prince, S.D.; Goward, S.N. Global primary production: A remote sensing approach. J. Biogeogr. 22:815–835; 1995.

    Article  Google Scholar 

  • Randerson, J.T.; Thompson, M.V.; Conway, T.J.; Fung, I.Y.; Field, C.B. The contribution of terrestrial sources and sinks to trends in the seasonal cycle of atmospheric carbon dioxide. Global Biogeochem. Cycl. 11:535–560; 1997.

    Article  CAS  Google Scholar 

  • Ruimy, A.; Saugier, B. Methodology for the estimation of terrestrial net primary production from remotely sensed data. J. Geophys. Res. 99:5263–5283; 1994.

    Article  Google Scholar 

  • Running, S.W.; Baldocchi, D.D.; Turner, D.P.; Gower, S.T.; Bakwin, P.S.; Hibbard, K.A. A global terrestrial monitoring network integrating tower fluxes, flask sampling, ecosystem modeling and EOS satellite data. Remote Sens. Environ. 70(1): 108–127; 1999.

    Article  Google Scholar 

  • Running, S.W.; Gower, S.T. FOREST-BGC, A general model of forest ecosystem processes for regional applications. II. Dynamic carbon allocation and nitrogen budgets. Tree Physiol. 9:147–160; 1991.

    PubMed  CAS  Google Scholar 

  • Running, S.W.; Hunt, Jr., E.R. Generalization of a forest ecosystem process model for other biomes, BIOME-BGC, and an application for global-scale models. In: Ehleringer, J.R.; Field, C., eds. Scaling Physiological Processes: Leaf to Globe. Orlando, FL: Academic; 1993.

    Google Scholar 

  • Running, S.W.; Justice, C.; Salomonson, V.; Hall, D.; Barker, J.; Kaufmann, Y.; Strahler, A.; Huete, A.; Muller, J.P.; Vanderbilt, V.; Wan, Z.M.; Teillet, P.; Carneggie, D. Terrestrial remote sensing science and algorithms planned from EOS/MODIS. Internat. J. Remote Sens. 15:358–3620; 1994.

    Google Scholar 

  • Running, S.W.; Loveland, T.R.; Pierce, L.L.; Nemani, R.R.; Hunt Jr., E.R. A remote sensing based vegetation classification logic for global land cover analysis. Remote Sens. Environ. 51:39–48; 1995.

    Article  Google Scholar 

  • Ryan, M.G.; Binkley, D.; Fownes, J.H. Age-related decline in forest productivity: Pattern and Process. Adv. Ecol. Res. 27:213–261; 1997.

    Article  Google Scholar 

  • Schloss, A.L.; Kicklighter, D.W.; Kaduk, J.; Wittenberg, U.; and the participants of the Potsdam NPP Model Intercomparison. Comparing global models of terrestrial net primary productivity (NPP): Comparison of NPP to climate and the Normalized Difference Vegetation Index (NDVI). Global Change Biol. 5:25–34; 1999.

    Article  Google Scholar 

  • Schulze, E.D.; Kelliher, F.M.; Korner, C.; Loyd, J.; Leuing, R. Relationships among maximum stomatal conductance, ecosystem surface conductance, carbon assimilation rate and plant nitrogen nutrition. Annu. Rev. Ecol. Syst. 25:629–660; 1994.

    Article  Google Scholar 

  • Scurlock, J.M.O.; Cramer, W.; Olson, R.J.; Parton, W.J.; Prince, S.D. Terrestrial NPP: Towards a consistent data set for global model evaluation. Ecol. Applic. 9(3):913–919; 1999.

    Google Scholar 

  • Sellers, P.J. Canopy reflectance, photosynthesis and transpiration. II. The role of biophysics in the linearity of their interdependence. Remote Sens. Environ. 21:143–183; 1987.

    Article  Google Scholar 

  • Sprugel, D.G.; Ryan, M.G.; Brooks, J.R.; Vogt, K.A.; Martin, T.A. Respiration from the organ level to stand level. In Smith, W.K.; Hinkley, T.M., eds. Resource Physiology of Conifers. San Diego, CA: Academic; 1995:255–299.

    Google Scholar 

  • Tans, P.P.; Fung, I.Y.; Takahashi, T. Observational constraints on the global atmospheric CO2 budget. Science 247:1431–1438; 1990.

    Article  PubMed  CAS  Google Scholar 

  • Thornton, P.E.; Running, S.W. An improved algorithm for estimating incident daily solar radiation from measurements of temperature, humidity, and precipitation. Agric. For. Meteorol. 93:211–228; 1999.

    Article  Google Scholar 

  • VEMAP [Vegetation/Ecosystem Modeling and Analysis Project] Members. Comparing biogeography and bio-geochemistry models in a continental scale study of terrestrial ecosystem responses to climate change and CO2 doubling. Global Biogeochem. Cycl. 9:407–437; 1995.

    Article  Google Scholar 

  • Waring, R.H.; Law, B.; et al. Scaling gross ecosystem production at Harvard Forest with remote sensing: A comparison of estimates from a constrained quantum-use efficiency model and eddy correlation. Plant Cell Environ. 18:1201–1213; 1995.

    Article  Google Scholar 

  • Waring, R.; Running, S.W. Forest Ecosystems: Analysis at Multiple Scales. San Diego, CA: Academic; 1998.

    Google Scholar 

  • White, M.E.; Thornton, P.E.; Running, S.W. A continental phenology model for monitoring vegetation responses to inter-annual climatic variability. global Biogeochem. Cycl. 11(2):217–234; 1997.

    Article  CAS  Google Scholar 

  • Zobler, L.A. A World Soil File for Global Climate Modeling. Tech. Memo. 87802. U.S. National Aeronautics and Space Administration (NASA), Greenbelt, MD; 1986.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Running, S.W., Thornton, P.E., Nemani, R., Glassy, J.M. (2000). Global Terrestrial Gross and Net Primary Productivity from the Earth Observing System. In: Sala, O.E., Jackson, R.B., Mooney, H.A., Howarth, R.W. (eds) Methods in Ecosystem Science. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-1224-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-1224-9_4

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-98743-9

  • Online ISBN: 978-1-4612-1224-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics